L(s) = 1 | + (0.104 − 0.994i)2-s + (0.866 + 0.5i)3-s + (−0.978 − 0.207i)4-s + (−0.669 + 0.743i)5-s + (0.587 − 0.809i)6-s + (−0.309 + 0.951i)8-s + (0.5 + 0.866i)9-s + (0.669 + 0.743i)10-s + (0.743 − 0.669i)11-s + (−0.743 − 0.669i)12-s + (−0.587 + 0.809i)13-s + (−0.951 + 0.309i)15-s + (0.913 + 0.406i)16-s + (−0.743 + 0.669i)17-s + (0.913 − 0.406i)18-s + (−0.406 + 0.913i)19-s + ⋯ |
L(s) = 1 | + (0.104 − 0.994i)2-s + (0.866 + 0.5i)3-s + (−0.978 − 0.207i)4-s + (−0.669 + 0.743i)5-s + (0.587 − 0.809i)6-s + (−0.309 + 0.951i)8-s + (0.5 + 0.866i)9-s + (0.669 + 0.743i)10-s + (0.743 − 0.669i)11-s + (−0.743 − 0.669i)12-s + (−0.587 + 0.809i)13-s + (−0.951 + 0.309i)15-s + (0.913 + 0.406i)16-s + (−0.743 + 0.669i)17-s + (0.913 − 0.406i)18-s + (−0.406 + 0.913i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.227392889 + 0.3376801147i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.227392889 + 0.3376801147i\) |
\(L(1)\) |
\(\approx\) |
\(1.149948347 - 0.04189344648i\) |
\(L(1)\) |
\(\approx\) |
\(1.149948347 - 0.04189344648i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.104 - 0.994i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + (-0.669 + 0.743i)T \) |
| 11 | \( 1 + (0.743 - 0.669i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 17 | \( 1 + (-0.743 + 0.669i)T \) |
| 19 | \( 1 + (-0.406 + 0.913i)T \) |
| 23 | \( 1 + (-0.104 + 0.994i)T \) |
| 29 | \( 1 + (0.951 - 0.309i)T \) |
| 31 | \( 1 + (0.669 + 0.743i)T \) |
| 37 | \( 1 + (0.669 - 0.743i)T \) |
| 43 | \( 1 + (0.809 + 0.587i)T \) |
| 47 | \( 1 + (-0.994 - 0.104i)T \) |
| 53 | \( 1 + (-0.207 + 0.978i)T \) |
| 59 | \( 1 + (0.913 - 0.406i)T \) |
| 61 | \( 1 + (-0.913 - 0.406i)T \) |
| 67 | \( 1 + (0.207 - 0.978i)T \) |
| 71 | \( 1 + (-0.951 - 0.309i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.406 - 0.913i)T \) |
| 97 | \( 1 + (-0.951 + 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.20569756936760788851254668676, −24.60137658799072592684861543736, −24.01042970587047301100113871694, −22.98311799010601175467693050658, −22.12667251644294694391296615597, −20.71289041875881385665354141750, −19.90494439207591430070632800149, −19.173377315458366516473670714101, −17.93836457755810055364952677781, −17.265828671934438039748126094030, −16.05386516595110120540975101194, −15.2214946627246889023223616494, −14.59227754366647887281624383733, −13.40349277348941687934023959908, −12.72183923571887919291279960389, −11.85023223461098504581752002526, −9.871828653749903848206609530976, −8.93672472785804050368239435586, −8.2461581260673949316097836723, −7.28996131846159195043857161758, −6.508307715861234420247663681350, −4.83548681540446949386355647154, −4.15532123367430990566198318000, −2.69950776338671606718170655654, −0.78589297425580372315701986829,
1.7661795987867344788335048260, 2.924920399998728322333961820673, 3.838153625908184573401992776343, 4.53040877643461139411634887220, 6.30012319622722620023504436818, 7.79676867630884505408199257613, 8.70219745473180131623886093012, 9.6496394365317647425187487128, 10.61917645715175754303591395305, 11.42866243835701536406623601205, 12.41816681721858977518720643001, 13.76503839646941198785854834398, 14.34762051204623712335838779316, 15.14590630267463872360029120538, 16.32592839402624883565145840833, 17.60498170905928866936039702699, 18.883865069899455742968981112369, 19.45311496765839703868359820168, 19.87158788706084484682621526120, 21.318217225181451707973598939661, 21.668006853670106364289906248333, 22.61674639598426881108403553454, 23.61096443816337281355345953541, 24.691166768795498953088880425436, 25.97761880493914512254449257307