L(s) = 1 | + (0.978 − 0.207i)2-s + (−0.866 − 0.5i)3-s + (0.913 − 0.406i)4-s + (0.104 − 0.994i)5-s + (−0.951 − 0.309i)6-s + (0.809 − 0.587i)8-s + (0.5 + 0.866i)9-s + (−0.104 − 0.994i)10-s + (0.994 − 0.104i)11-s + (−0.994 − 0.104i)12-s + (0.951 + 0.309i)13-s + (−0.587 + 0.809i)15-s + (0.669 − 0.743i)16-s + (−0.994 + 0.104i)17-s + (0.669 + 0.743i)18-s + (−0.743 − 0.669i)19-s + ⋯ |
L(s) = 1 | + (0.978 − 0.207i)2-s + (−0.866 − 0.5i)3-s + (0.913 − 0.406i)4-s + (0.104 − 0.994i)5-s + (−0.951 − 0.309i)6-s + (0.809 − 0.587i)8-s + (0.5 + 0.866i)9-s + (−0.104 − 0.994i)10-s + (0.994 − 0.104i)11-s + (−0.994 − 0.104i)12-s + (0.951 + 0.309i)13-s + (−0.587 + 0.809i)15-s + (0.669 − 0.743i)16-s + (−0.994 + 0.104i)17-s + (0.669 + 0.743i)18-s + (−0.743 − 0.669i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0595 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.0595 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.266976142 - 1.344838916i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.266976142 - 1.344838916i\) |
\(L(1)\) |
\(\approx\) |
\(1.360154796 - 0.7371429002i\) |
\(L(1)\) |
\(\approx\) |
\(1.360154796 - 0.7371429002i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 \) |
good | 2 | \( 1 + (0.978 - 0.207i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (0.104 - 0.994i)T \) |
| 11 | \( 1 + (0.994 - 0.104i)T \) |
| 13 | \( 1 + (0.951 + 0.309i)T \) |
| 17 | \( 1 + (-0.994 + 0.104i)T \) |
| 19 | \( 1 + (-0.743 - 0.669i)T \) |
| 23 | \( 1 + (-0.978 + 0.207i)T \) |
| 29 | \( 1 + (0.587 - 0.809i)T \) |
| 31 | \( 1 + (-0.104 - 0.994i)T \) |
| 37 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.309 + 0.951i)T \) |
| 47 | \( 1 + (0.207 + 0.978i)T \) |
| 53 | \( 1 + (0.406 + 0.913i)T \) |
| 59 | \( 1 + (0.669 + 0.743i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (-0.406 - 0.913i)T \) |
| 71 | \( 1 + (-0.587 - 0.809i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.743 + 0.669i)T \) |
| 97 | \( 1 + (-0.587 + 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.650253500680439902979330853, −24.78069707667095140230480635137, −23.52523597181143976707108863753, −23.034824112559840286586493658337, −22.12385802961977727442248659395, −21.74411005235630411851912030769, −20.64622589565503106701548150619, −19.60765152440441596507531390391, −18.19971086786776897481185414348, −17.44760865262649463176815268556, −16.34216444011895677448378452790, −15.59440121328655201724798815504, −14.69823395990624585189181649775, −13.909517814912306227005474204062, −12.643652639407427759915554937010, −11.721621227514660075339334368595, −10.9027939048242498243677496762, −10.222643592104601132234733797829, −8.59951567355123348191209415247, −6.9286464801658168053006664321, −6.43448092466569278035807201349, −5.51359627844767088524331834970, −4.14352886237126689323996994188, −3.51116625907695372132499842185, −1.887739579297369648619460049285,
1.102824667632306121562886538923, 2.120644739394643336062474721531, 4.09145129392516712229690639617, 4.68223057292078842815272722623, 6.087551341476991685198596596789, 6.41586814728402150992378110504, 7.92147430725518113269197747748, 9.24847502098457785884358543297, 10.65086489974378147872529827947, 11.60448530017366982889679211646, 12.15369168936065179061679734639, 13.35519064276911307596228431407, 13.59777603233446499602234133675, 15.21079222937484973031692639443, 16.156397540233902523683634616222, 16.88590354607916757135196398561, 17.826935621536864804856436311948, 19.21134562532590227954042484588, 19.902440602004753318714075927539, 20.98004921554123471038736489129, 21.845597374257640772862863096970, 22.58016793945215744476004305371, 23.62768538704494638530874791411, 24.146990440987064279932885320320, 24.855502534025226525153684521726