Properties

Label 1-287-287.108-r0-0-0
Degree $1$
Conductor $287$
Sign $0.698 + 0.715i$
Analytic cond. $1.33282$
Root an. cond. $1.33282$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.743 + 0.669i)2-s + (−0.965 − 0.258i)3-s + (0.104 − 0.994i)4-s + (0.406 + 0.913i)5-s + (0.891 − 0.453i)6-s + (0.587 + 0.809i)8-s + (0.866 + 0.5i)9-s + (−0.913 − 0.406i)10-s + (0.933 − 0.358i)11-s + (−0.358 + 0.933i)12-s + (−0.453 − 0.891i)13-s + (−0.156 − 0.987i)15-s + (−0.978 − 0.207i)16-s + (0.358 + 0.933i)17-s + (−0.978 + 0.207i)18-s + (−0.544 − 0.838i)19-s + ⋯
L(s)  = 1  + (−0.743 + 0.669i)2-s + (−0.965 − 0.258i)3-s + (0.104 − 0.994i)4-s + (0.406 + 0.913i)5-s + (0.891 − 0.453i)6-s + (0.587 + 0.809i)8-s + (0.866 + 0.5i)9-s + (−0.913 − 0.406i)10-s + (0.933 − 0.358i)11-s + (−0.358 + 0.933i)12-s + (−0.453 − 0.891i)13-s + (−0.156 − 0.987i)15-s + (−0.978 − 0.207i)16-s + (0.358 + 0.933i)17-s + (−0.978 + 0.207i)18-s + (−0.544 − 0.838i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 287 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.698 + 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(287\)    =    \(7 \cdot 41\)
Sign: $0.698 + 0.715i$
Analytic conductor: \(1.33282\)
Root analytic conductor: \(1.33282\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{287} (108, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 287,\ (0:\ ),\ 0.698 + 0.715i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6352667233 + 0.2677605270i\)
\(L(\frac12)\) \(\approx\) \(0.6352667233 + 0.2677605270i\)
\(L(1)\) \(\approx\) \(0.6247339838 + 0.1829990338i\)
\(L(1)\) \(\approx\) \(0.6247339838 + 0.1829990338i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
41 \( 1 \)
good2 \( 1 + (0.743 - 0.669i)T \)
3 \( 1 + (0.965 + 0.258i)T \)
5 \( 1 + (-0.406 - 0.913i)T \)
11 \( 1 + (-0.933 + 0.358i)T \)
13 \( 1 + (0.453 + 0.891i)T \)
17 \( 1 + (-0.358 - 0.933i)T \)
19 \( 1 + (0.544 + 0.838i)T \)
23 \( 1 + (0.669 + 0.743i)T \)
29 \( 1 + (-0.987 + 0.156i)T \)
31 \( 1 + (-0.913 - 0.406i)T \)
37 \( 1 + (-0.913 + 0.406i)T \)
43 \( 1 + (-0.951 - 0.309i)T \)
47 \( 1 + (0.0523 - 0.998i)T \)
53 \( 1 + (-0.629 - 0.777i)T \)
59 \( 1 + (-0.978 + 0.207i)T \)
61 \( 1 + (0.207 - 0.978i)T \)
67 \( 1 + (-0.777 + 0.629i)T \)
71 \( 1 + (-0.156 + 0.987i)T \)
73 \( 1 + (0.866 - 0.5i)T \)
79 \( 1 + (-0.258 - 0.965i)T \)
83 \( 1 + T \)
89 \( 1 + (0.838 - 0.544i)T \)
97 \( 1 + (-0.156 - 0.987i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−25.392357436061132863621636518950, −24.68737587932944441823183918916, −23.54250459209468069187173238362, −22.46467005356223692697496256167, −21.596138720158426787421896454874, −20.97891099609708058641031013011, −20.01434602121197595480428551117, −19.01262187561651435398199342214, −17.95163218620155238345227657705, −17.15991261563604200205065606292, −16.62471073741385565423124235453, −15.8184533302021054283427823088, −14.13973757930361327923401238533, −12.9032618842802510746655102532, −11.90238727303534800150121973123, −11.66982087285721443048475813087, −10.03594320034374507691070996286, −9.672316704582227466808203320565, −8.597857953931220575718841924518, −7.22987861410767988055684558182, −6.14305438903019710964054751385, −4.73885302410278646435532416345, −3.9479028726710669797669457158, −2.02477904641913729190270403555, −0.94162027543308038050791885271, 0.99558747741666631332953594525, 2.46216272606600033776044940149, 4.43889342984481630996833764105, 5.855711366273656441149899726330, 6.33580537669473955272562545550, 7.26305169742838026608852457671, 8.36140296366168366882069121836, 9.78943912084811621408687116410, 10.50920549797929808251408814436, 11.2577803444281657661898806699, 12.49675243991713868814874959459, 13.830246212738966083380868812057, 14.74830866145148784928163391955, 15.650466294731553218482349505806, 16.773139787591514129660721812826, 17.51259205369313121106961253779, 18.00444014859598540692988609519, 19.12448851283156273090359626280, 19.661377516094492407694500611073, 21.41077635918230026016941327381, 22.30380501505429545337267464922, 22.98087356053625958918423020944, 23.97033439998207574775244522281, 24.79299095463666951923351769282, 25.5874515848672068338451893377

Graph of the $Z$-function along the critical line