L(s) = 1 | + i·2-s − 4-s − i·5-s − i·8-s + 10-s − i·11-s + 16-s − 17-s + i·19-s + i·20-s + 22-s + 23-s − 25-s − 29-s + i·31-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s − i·5-s − i·8-s + 10-s − i·11-s + 16-s − 17-s + i·19-s + i·20-s + 22-s + 23-s − 25-s − 29-s + i·31-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02382526336 + 0.1609067754i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02382526336 + 0.1609067754i\) |
\(L(1)\) |
\(\approx\) |
\(0.7279176310 + 0.2203957249i\) |
\(L(1)\) |
\(\approx\) |
\(0.7279176310 + 0.2203957249i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 \) |
| 19 | \( 1 \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 \) |
| 43 | \( 1 \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.14295520230212960257645602345, −23.75474302843969784596468184846, −22.86285330152255481756593185469, −22.23718991797603342922573152662, −21.4155993976256111813533452380, −20.313070273186591936177058530986, −19.60056403044861707023292786125, −18.607958248905475607226322634742, −17.89369472931817573976115407229, −17.08455545462901349210403808406, −15.334411897033557744003700225092, −14.7344561854325021444596084271, −13.52640225136290567147436716885, −12.802836450044202847491172567352, −11.4797141617373661854233844141, −10.96220971992675853607455126832, −9.86600421823342223432949815237, −9.063639554484638609691632064388, −7.63562636151697961618480186951, −6.5931914971002069695431834105, −5.0729085561195520836973562354, −3.99851549158183118386954870495, −2.79326125033551321357181938996, −1.896003167415264962478116784823, −0.05230306575999167489188760915,
1.321310702307152130356659560457, 3.45937081918149033217150622572, 4.63803969999198709349943608809, 5.54269628248608801508828876273, 6.53198342878171541275833661373, 7.83015757518690776364432203410, 8.67879826021385943341259351508, 9.36969026470641986659225403767, 10.75781044901782137691608222776, 12.15444585583765830944463380651, 13.15496503508294944517184413481, 13.822311254289219815171801524107, 15.00154285378326264972459518355, 15.96137493573433953343484462595, 16.672794734679533381579087922316, 17.388240118630382632416417671083, 18.5354516714829838071962547813, 19.40161490192325601573450712580, 20.61581082121237451264689421171, 21.560363202167245146901362883405, 22.51745037979409859187800203621, 23.550830297380229706167683411335, 24.31291832360959219782968431928, 24.880400419873621399933691037508, 25.813400827508082578814768997419