L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s − 5-s + 8-s + (0.5 − 0.866i)10-s + (−0.5 + 0.866i)11-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s + (0.5 − 0.866i)23-s + 25-s + (0.5 − 0.866i)29-s + 31-s + (−0.5 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s − 5-s + 8-s + (0.5 − 0.866i)10-s + (−0.5 + 0.866i)11-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s + (0.5 − 0.866i)23-s + 25-s + (0.5 − 0.866i)29-s + 31-s + (−0.5 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5135586810 - 0.1411430276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5135586810 - 0.1411430276i\) |
\(L(1)\) |
\(\approx\) |
\(0.6017569688 + 0.1106713302i\) |
\(L(1)\) |
\(\approx\) |
\(0.6017569688 + 0.1106713302i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.17862107903557069826704929446, −25.00021480671537741216576350093, −23.73746674432040669985940435936, −23.074648991290827116104097345334, −21.909896900796224774348288464329, −21.1857907293435141272585224398, −20.161200291453375449721970949169, −19.30891196793585163468867828549, −18.79575934345764905402024963764, −17.680843095771461526185621196701, −16.63152560537780410165393622313, −15.82110723142753711230007846140, −14.61040157287384543112300435491, −13.29447930960984602448931406384, −12.53008019085968112545936420, −11.432451815137126145912967350660, −10.86052471668418423962618499223, −9.74285100837815344316971367338, −8.33725822382200731714908432367, −8.07661873877982225269706287625, −6.580957482136193125478310664187, −4.88601797585690217608325128539, −3.76427415971740557466556976873, −2.88922937073979863441574210905, −1.26075068560597245070512962001,
0.48568130809205055328353223233, 2.47414651560401942033751270450, 4.309705619748458653653835210940, 4.98247020960558981482414439596, 6.56448757484555130448935096015, 7.31689178239205641533662377878, 8.25086935785477590649907495580, 9.18970370506593350498551802217, 10.34945419915589699018800871399, 11.32005221264457771289512425570, 12.5682211979298526312005121287, 13.66261627885014946620328211940, 14.88288926042333681162439499164, 15.49827509263361018037118969066, 16.23737440911609811029260550044, 17.36131001200862238574205206714, 18.17792708467331233506669645798, 19.144972334902855619750126542837, 19.88487560433457149669605183226, 20.89181875838214014452429169555, 22.536355083267952106945338240918, 23.014379407913720670134164724662, 23.92488580526780790334517949458, 24.71050582838792929656155773860, 25.68742526337837103731446763426