L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 20-s + 22-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s − 29-s + (−0.5 − 0.866i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s + 8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)11-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s − 20-s + 22-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s − 29-s + (−0.5 − 0.866i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7015429952 - 0.3477739833i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7015429952 - 0.3477739833i\) |
\(L(1)\) |
\(\approx\) |
\(0.7822482443 + 0.008901401302i\) |
\(L(1)\) |
\(\approx\) |
\(0.7822482443 + 0.008901401302i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.77765037167928245212346115326, −25.578011661623474132096281188122, −23.87052690681569401365732381502, −22.84841086629472154639469898747, −21.98566435528974241066444208338, −21.34065752989929390140091747010, −20.32269689454227394572538696728, −19.393458487292944773802330817030, −18.560900233358172265909634810411, −17.65168857414060706409325733709, −17.15781967815146446907485719301, −15.59996665140325730362369511131, −14.65115737034036915716063128481, −13.37896244880688135641247750565, −12.78033738332933221862936204416, −11.422194476112654752033594974692, −10.69058413021996957848265854868, −9.85210425106006401960381506817, −8.91035140737686497765283297576, −7.6179819284093525964634757003, −6.714594588901156391019465947885, −5.14637240180852063909699803613, −3.81956058969153584076369973580, −2.636372646877967619573544222105, −1.72712557476740683689033704485,
0.626909943364665538059155313429, 2.16715891755494195775476840467, 4.16616417519851315072101885244, 5.33677325544248241227981045640, 6.02399604777698606589089525273, 7.32854479158215941909275240436, 8.43532352053861681094553953911, 9.09512701441921690085803247094, 10.13485625070778234013222011629, 11.198492944799412445758586190636, 12.76091925335522470446153382112, 13.54381935527992524143146407099, 14.46897612890482409727716567646, 15.6218491967033064608673253363, 16.534058572652561426929849997756, 16.99365617189020335248204357909, 18.22884777802095354007505591147, 18.828959691671442994623031171696, 20.09415779714664850877600890761, 20.90405145826409872613050384420, 22.065955683403736894685073674322, 23.11422556555935184466510021612, 24.09669518726907028094932382410, 24.68311390087944269242569376553, 25.4508949866986026285889277867