L(s) = 1 | + i·2-s − 4-s + (−0.866 + 0.5i)5-s − i·8-s + (−0.5 − 0.866i)10-s + (−0.866 + 0.5i)11-s + 16-s − 17-s + (−0.866 − 0.5i)19-s + (0.866 − 0.5i)20-s + (−0.5 − 0.866i)22-s + 23-s + (0.5 − 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.866 − 0.5i)31-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s + (−0.866 + 0.5i)5-s − i·8-s + (−0.5 − 0.866i)10-s + (−0.866 + 0.5i)11-s + 16-s − 17-s + (−0.866 − 0.5i)19-s + (0.866 − 0.5i)20-s + (−0.5 − 0.866i)22-s + 23-s + (0.5 − 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.866 − 0.5i)31-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.931 + 0.362i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.931 + 0.362i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7754945332 + 0.1455506885i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7754945332 + 0.1455506885i\) |
\(L(1)\) |
\(\approx\) |
\(0.6293141631 + 0.3395415936i\) |
\(L(1)\) |
\(\approx\) |
\(0.6293141631 + 0.3395415936i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + iT \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (0.866 + 0.5i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + iT \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.866 - 0.5i)T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.57277891711903410278162699224, −24.18227123514275738024196101254, −23.50856513513089402393185438341, −22.70645752861919287065080380088, −21.56888599153690307687906585963, −20.838117105862193899371051878985, −19.939980875611256660573159557620, −19.19777747419815073481538049103, −18.37737730567241552967052686960, −17.28437072399372759195613642897, −16.21068692899313206566154192066, −15.19941078792704212991869011808, −14.020752844477107491210321204146, −12.86707049135461707135335171365, −12.41318566184063163877657660088, −11.054788455178144215005846880010, −10.686532477386080624092741444703, −9.07530978276759813634186775534, −8.50132219481796349355355669913, −7.32464668921984999888269266102, −5.54790997110994000143148281867, −4.530047138634501930478734877993, −3.55581777194456291415610084679, −2.32639209638966839841679347823, −0.78428597902106022152610446420,
0.365099683096231204695746554458, 2.63748572402811903098509335979, 4.09138862500920968463255462747, 4.904188171468875253241031879119, 6.330185539836268578123131408824, 7.196574529357040579096299366361, 8.04215313023448854280985628904, 9.023903162913477914738732448762, 10.305103355705523333297509034504, 11.305429604706831573954771130620, 12.69339747401635579870172525180, 13.4348198513080522539962599634, 14.79748909179351866969788547560, 15.285612099493965970686758303024, 16.07598376304677219612008868246, 17.21449384609231705661571211004, 18.10027637359264069747866770837, 18.93894467561208807643973623217, 19.82553375035822121421586465758, 21.164173411593377316918643003593, 22.25619471069483904423763959447, 23.055240660359563643180566992817, 23.68600852791192979728154353151, 24.54325639381457856169454267229, 25.68568425064696055877359976154