L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 8-s + 10-s + 11-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s − 19-s + (−0.5 + 0.866i)20-s + (−0.5 + 0.866i)22-s + (0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)29-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 − 0.866i)4-s + (−0.5 − 0.866i)5-s + 8-s + 10-s + 11-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s − 19-s + (−0.5 + 0.866i)20-s + (−0.5 + 0.866i)22-s + (0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)29-s + (0.5 − 0.866i)31-s + (−0.5 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8819341296 - 0.4653268246i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8819341296 - 0.4653268246i\) |
\(L(1)\) |
\(\approx\) |
\(0.7583444334 + 0.05789709291i\) |
\(L(1)\) |
\(\approx\) |
\(0.7583444334 + 0.05789709291i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.71181116151348054706350363262, −25.095432606662503456674514675125, −23.44677172651425366260238153590, −22.772290644561357382427980618033, −21.88949554206472251228720621681, −21.082138613365559057092666532777, −19.88872386470319889329660957381, −19.27617730501312695606275090922, −18.51163665033830297817737205461, −17.52340421548943314060726234911, −16.658593570839385830119814245228, −15.41593017072431168328647834737, −14.33244243486305308450421511262, −13.40268547443474080897909876010, −12.02282765583535787371922653104, −11.550227330523582842100370796822, −10.49895609279726605005053907028, −9.60723516354167951372912890420, −8.50212644519929764074540633864, −7.45416079503406440535319701225, −6.46544033661574964305095491218, −4.62505554896584718873964462151, −3.55954162183579400198905872921, −2.623904011600699088046897437286, −1.139861515204823565484986868834,
0.43869163195780131983004943586, 1.64363853341555319144378078004, 3.884873734850229953257999746494, 4.79063206112297378336486174737, 6.00876681130680623681587602724, 6.98404363094788005753607767331, 8.25120077863334172641934014499, 8.76656849049971358180349681774, 9.860313769468694489044067248931, 11.02518779358766508329487826802, 12.29480501647473838006375906513, 13.22130935365804884365279066544, 14.535715379330034662071561118259, 15.13429573793281706712826057723, 16.38940628919382561060238858832, 16.825941379708416322016543360781, 17.72862534376169060280763800362, 19.06344275453956226931043831958, 19.54867005083728987837475202800, 20.59811682916236659750014874937, 21.83318481023663330791002718791, 23.00703599402963907141251559958, 23.67634708521820315641511505676, 24.579894690868998063130995490752, 25.196720640410879992540979317816