L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)5-s − i·8-s + (0.5 + 0.866i)10-s + (−0.866 + 0.5i)11-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 + 0.866i)23-s + (0.5 + 0.866i)25-s − 29-s + (−0.866 + 0.5i)31-s + (0.866 − 0.5i)32-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.5 + 0.866i)4-s + (−0.866 − 0.5i)5-s − i·8-s + (0.5 + 0.866i)10-s + (−0.866 + 0.5i)11-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s − i·20-s + 22-s + (−0.5 + 0.866i)23-s + (0.5 + 0.866i)25-s − 29-s + (−0.866 + 0.5i)31-s + (0.866 − 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.228 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1384481016 + 0.1747215720i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1384481016 + 0.1747215720i\) |
\(L(1)\) |
\(\approx\) |
\(0.4728044996 - 0.05165524884i\) |
\(L(1)\) |
\(\approx\) |
\(0.4728044996 - 0.05165524884i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.85861832660038591410651999532, −24.263316857758589621739802313281, −24.05825720526071262302637128774, −22.93383509287088025661551231283, −21.94935910294320990377626844103, −20.51378285133094328060255232692, −19.82781366000742838366532924209, −18.74968233272313176715965781009, −18.34659666932727930012404292502, −17.13670972289072969645820341691, −16.129545963684627785780756397852, −15.44814126506171684977630997710, −14.64404268371148944668690666793, −13.45195906752044339108162135230, −12.004674719052664754740801296154, −10.96759713729480678707092589244, −10.38226082462544931404182908765, −9.00515938523282610990681737563, −8.08276168030489992000111829811, −7.30662066621483252611521726692, −6.25135354160131653508309085737, −5.05666933192917359743388715937, −3.50078477970898169585898134219, −2.12672032903600838799574367339, −0.19935103304320804136659622195,
1.50105277899594920176994817254, 2.93973059998581400213878519333, 4.0620907122572011897919521817, 5.3715946660724320805527219427, 7.22459841953591666088931707630, 7.71834558828274402690843507452, 8.86250671105621346877254974564, 9.73906182595495925290531840492, 10.886979616317685126906289065701, 11.76712012743147427469677835687, 12.5446516988810164903898402576, 13.56687918393541407188968315126, 15.25368695056640348542630706312, 15.96879754029416812837686914591, 16.732926420499149548271580337928, 17.97693525992391407116878463335, 18.54936422507537405996765784437, 19.740206148056630106214704379163, 20.288876596827213066188697348867, 21.06447022396882074623660610558, 22.25974963008623495594219845212, 23.26286743629270170287817622986, 24.305910684992382906672463590257, 25.17623179219845827167236597566, 26.23264054807429082446418335026