L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s − i·5-s − i·8-s + (−0.5 − 0.866i)10-s + (−0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (−0.866 − 0.5i)20-s + (−0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 25-s + (0.5 + 0.866i)29-s + i·31-s + (−0.866 − 0.5i)32-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s − i·5-s − i·8-s + (−0.5 − 0.866i)10-s + (−0.866 + 0.5i)11-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (−0.866 − 0.5i)20-s + (−0.5 + 0.866i)22-s + (−0.5 − 0.866i)23-s − 25-s + (0.5 + 0.866i)29-s + i·31-s + (−0.866 − 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.04035937202 - 2.090154684i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.04035937202 - 2.090154684i\) |
\(L(1)\) |
\(\approx\) |
\(1.142511047 - 0.9445516671i\) |
\(L(1)\) |
\(\approx\) |
\(1.142511047 - 0.9445516671i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 - iT \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + iT \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + iT \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.8903189729649702934171832710, −25.08841745733967128570607184441, −23.78856952038852424594170716780, −23.39460781179878197035269359924, −22.35262568355725411756340833778, −21.55052594809824347500882117978, −20.90372564778847595170859937394, −19.51773396802065500439863846581, −18.59168748137642923493290292344, −17.52161667050207724113556083823, −16.57042210443212332302173523904, −15.45126835907709552914973062697, −14.881897580502660560966869950959, −13.857181506899931615903293673728, −13.0974961440521542742687976608, −11.92235332618066869546910925543, −10.97734640777054819955601207765, −10.03880643590580826008112156166, −8.24429202136998856386645770933, −7.59973988982645103252811489795, −6.30781994759845765386630441747, −5.710035421223637165254089135609, −4.210253822347712105638531200387, −3.22465978026250118491136957600, −2.15547301978563237417902420441,
0.43864108055828928597567190432, 1.83823391528615786593574860935, 3.0326297584357460780678097199, 4.52953252864850341941574356277, 5.039705938338958094110578623097, 6.2642801087330766222417268003, 7.566406369080737538440386694062, 8.88325195261076337524303318671, 9.97936929871990584890371483894, 10.918600752591499659722907598192, 12.19200042071693089345403596411, 12.684113091176534152696830954996, 13.63141952899847365427045737594, 14.622954011341790974488415108142, 15.76012917452043688250424686022, 16.36854299845150968589378551168, 17.737474239977562607813634505232, 18.80990579364443166330236154925, 19.91794246558245409001081937785, 20.55969492508469671516644711042, 21.27820967255589360805463267789, 22.223615791973224833852115764, 23.46768129756314232810163532144, 23.72220301028786219276669171570, 24.9305941250679068861687956184