L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s − i·8-s − 10-s − i·11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s − i·19-s + (−0.866 + 0.5i)20-s + (−0.5 − 0.866i)22-s + (−0.5 − 0.866i)23-s + (0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s − i·8-s − 10-s − i·11-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)17-s − i·19-s + (−0.866 + 0.5i)20-s + (−0.5 − 0.866i)22-s + (−0.5 − 0.866i)23-s + (0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.866 + 0.5i)31-s + (−0.866 − 0.5i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.575 - 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.575 - 0.818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7184183837 - 1.383273754i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7184183837 - 1.383273754i\) |
\(L(1)\) |
\(\approx\) |
\(1.150521218 - 0.7911837491i\) |
\(L(1)\) |
\(\approx\) |
\(1.150521218 - 0.7911837491i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 - iT \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (0.866 - 0.5i)T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.73887803708633100186708263908, −25.178595091275356663898536815974, −23.934197413124261714440678524937, −23.33615929550334492372705676308, −22.526498936910717575201054713010, −21.83903107572954295185203791346, −20.47086962458477741448577709948, −20.00617538616457827211000658, −18.596892095841207445240999123969, −17.68476264189066767826740673371, −16.47528704929256236850135339776, −15.680545484480926135823078837824, −14.89737220164990675599419086851, −14.11612672087276901917959305608, −12.936706861633311750773424864062, −11.99891426287116917931672799731, −11.30907952768665661884441144916, −9.99575562119261546906848631673, −8.46663248002737017240893544666, −7.430009018850828807143949118091, −6.82962172565097513613771044285, −5.46848648219539007595755956122, −4.343999381536624906130433208552, −3.469553738521165438908562281055, −2.19151670976953279908633200318,
0.80507741753867615900110373448, 2.461486744237972519689909984951, 3.71655346593903378514733593485, 4.511151818100179182253663211649, 5.69158656561174460708234202924, 6.778425507727217147026340803966, 8.13923271743438750661449308349, 9.171198137527899472888455826414, 10.65998678423349908366451726894, 11.30730725085313037741559309042, 12.30842685396939975948894247673, 13.10041764421225375446026179433, 14.075746031319204674880483827566, 15.17562139026777956068574196069, 15.90015204388587403601423892608, 16.82354836608748878160374945076, 18.3393832352724309998169211833, 19.43878261557436250584866310316, 19.84108999972790962539537436699, 20.92726948233337114131317192705, 21.78417447987983213766850344036, 22.602158494235165688357590648963, 23.80300020621857229764199047788, 24.027380762281739927290664010901, 25.03974503025716082840895507636