L(s) = 1 | − 2-s + 4-s + (0.5 + 0.866i)5-s − 8-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 16-s − 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s − 32-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + (0.5 + 0.866i)5-s − 8-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 16-s − 17-s + (−0.5 + 0.866i)19-s + (0.5 + 0.866i)20-s + (−0.5 − 0.866i)22-s − 23-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)31-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.981 + 0.190i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.981 + 0.190i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05596830829 + 0.5811735144i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05596830829 + 0.5811735144i\) |
\(L(1)\) |
\(\approx\) |
\(0.6227778316 + 0.2144214012i\) |
\(L(1)\) |
\(\approx\) |
\(0.6227778316 + 0.2144214012i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.082975802395893728946303025809, −24.37544866307906183691575350681, −23.70166428234352515109554532730, −21.89091280966704565256563285380, −21.43114326424526832752134561277, −20.02698683031440979449950626695, −19.85700950776515259411936029047, −18.473758670974486290883561995128, −17.68775574912246694166718245986, −16.78062361480597135622600622336, −16.17112915455972105928364797532, −15.08166779295204509690437827036, −13.77658138926850863926348028935, −12.759874838867596075151135457, −11.63088092534190044772193734452, −10.76806211715859308193448597842, −9.53686987859165478609346779462, −8.871855127644025403799387120086, −8.03520615617222455689369618492, −6.61956181816379746364276431945, −5.80189142770056707891918001227, −4.320291957795171835338925108750, −2.66207672262993431778816640029, −1.44766661926720139169172158397, −0.24122640639059654399964346160,
1.67776912565855837974280303802, 2.5361218734772927818316866765, 4.0311766813262257963901828446, 5.89171218002276868105923733817, 6.70006704264767805235981649736, 7.60884957007114834297952552670, 8.83092607476808127635986294516, 9.84724170866970773820516948778, 10.51275600528565966119251985201, 11.5453977036981293487743060311, 12.55836660962568038906668819356, 14.02414092958712568202381988535, 14.9229349130929600486381779089, 15.775065749557453157839597179708, 17.00000914550441480059369901024, 17.74324900548110056425780447305, 18.40649948081991806861162836276, 19.42498826894750866698197990891, 20.21929104932427196391759766951, 21.2683985992281807527473330, 22.179128796667823236596917930823, 23.18216604399375264287293132067, 24.4194992893171688906416574502, 25.33784959892097278091778028329, 25.862929743784230332465419300341