Properties

Label 1-260-260.47-r1-0-0
Degree $1$
Conductor $260$
Sign $0.256 - 0.966i$
Analytic cond. $27.9408$
Root an. cond. $27.9408$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 7-s − 9-s + i·11-s i·17-s + i·19-s i·21-s i·23-s i·27-s − 29-s i·31-s − 33-s + 37-s + i·41-s i·43-s + ⋯
L(s)  = 1  + i·3-s − 7-s − 9-s + i·11-s i·17-s + i·19-s i·21-s i·23-s i·27-s − 29-s i·31-s − 33-s + 37-s + i·41-s i·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(260\)    =    \(2^{2} \cdot 5 \cdot 13\)
Sign: $0.256 - 0.966i$
Analytic conductor: \(27.9408\)
Root analytic conductor: \(27.9408\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{260} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 260,\ (1:\ ),\ 0.256 - 0.966i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4054398590 - 0.3118226147i\)
\(L(\frac12)\) \(\approx\) \(0.4054398590 - 0.3118226147i\)
\(L(1)\) \(\approx\) \(0.7532252852 + 0.2000298488i\)
\(L(1)\) \(\approx\) \(0.7532252852 + 0.2000298488i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + T \)
7 \( 1 + iT \)
11 \( 1 \)
17 \( 1 \)
19 \( 1 - T \)
23 \( 1 \)
29 \( 1 - T \)
31 \( 1 \)
37 \( 1 + iT \)
41 \( 1 \)
43 \( 1 \)
47 \( 1 \)
53 \( 1 \)
59 \( 1 \)
61 \( 1 - iT \)
67 \( 1 \)
71 \( 1 + iT \)
73 \( 1 \)
79 \( 1 - iT \)
83 \( 1 \)
89 \( 1 - iT \)
97 \( 1 \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−25.8535465002048766537612993166, −24.89535807356232202390833762020, −23.98239440508835589867032605797, −23.33058255172928072126302421590, −22.251808590249847627527924848437, −21.44473671018011723061992768597, −19.917490799315540273403732621, −19.41662887407576977936938630871, −18.631179005688829855986648319245, −17.55755622715303362838338514333, −16.68879041986803860056789460275, −15.66888303166841222380297641947, −14.43781595390516597278471146761, −13.32937283938456314964343438789, −12.91201301310202750303276073056, −11.70375224361985146276360266404, −10.7905674380200407084279169927, −9.37209550336481948426080208009, −8.44909474753992177307202315721, −7.30479724118214230361853201945, −6.346983433173707027007316696186, −5.536650501656135171677241753881, −3.66004198952386055150133297094, −2.66036022319062961477531739874, −1.158899915404866759701333510750, 0.172265469609425367360562419355, 2.37026760252154234653214757443, 3.55280816601168227470162632826, 4.55500271325078877596642601586, 5.71464267555651244338905571934, 6.85121112571692566540116203707, 8.18253692741828971004361260589, 9.60776711565450309740261198169, 9.79566855478933865569819500674, 11.08196171925004387602859659440, 12.177195126824324874950660455070, 13.19737232156118236215846646725, 14.46653171655395654820211206836, 15.2108878746913446084290978340, 16.27376443834304740097376426217, 16.75711372765336901834616516775, 18.05690851492317029413223081096, 19.09129000257841166656263878855, 20.33865305059036499167934825496, 20.62772882643711600109378880563, 22.01752912257398983660881706337, 22.642040096122393337520681799774, 23.263190507210647645455072356010, 24.83739295465349092652850947791, 25.60826569435650489433995771377

Graph of the $Z$-function along the critical line