L(s) = 1 | + i·3-s − 7-s − 9-s + i·11-s − i·17-s + i·19-s − i·21-s − i·23-s − i·27-s − 29-s − i·31-s − 33-s + 37-s + i·41-s − i·43-s + ⋯ |
L(s) = 1 | + i·3-s − 7-s − 9-s + i·11-s − i·17-s + i·19-s − i·21-s − i·23-s − i·27-s − 29-s − i·31-s − 33-s + 37-s + i·41-s − i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.256 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4054398590 - 0.3118226147i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4054398590 - 0.3118226147i\) |
\(L(1)\) |
\(\approx\) |
\(0.7532252852 + 0.2000298488i\) |
\(L(1)\) |
\(\approx\) |
\(0.7532252852 + 0.2000298488i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 \) |
| 43 | \( 1 \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 - iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.8535465002048766537612993166, −24.89535807356232202390833762020, −23.98239440508835589867032605797, −23.33058255172928072126302421590, −22.251808590249847627527924848437, −21.44473671018011723061992768597, −19.917490799315540273403732621, −19.41662887407576977936938630871, −18.631179005688829855986648319245, −17.55755622715303362838338514333, −16.68879041986803860056789460275, −15.66888303166841222380297641947, −14.43781595390516597278471146761, −13.32937283938456314964343438789, −12.91201301310202750303276073056, −11.70375224361985146276360266404, −10.7905674380200407084279169927, −9.37209550336481948426080208009, −8.44909474753992177307202315721, −7.30479724118214230361853201945, −6.346983433173707027007316696186, −5.536650501656135171677241753881, −3.66004198952386055150133297094, −2.66036022319062961477531739874, −1.158899915404866759701333510750,
0.172265469609425367360562419355, 2.37026760252154234653214757443, 3.55280816601168227470162632826, 4.55500271325078877596642601586, 5.71464267555651244338905571934, 6.85121112571692566540116203707, 8.18253692741828971004361260589, 9.60776711565450309740261198169, 9.79566855478933865569819500674, 11.08196171925004387602859659440, 12.177195126824324874950660455070, 13.19737232156118236215846646725, 14.46653171655395654820211206836, 15.2108878746913446084290978340, 16.27376443834304740097376426217, 16.75711372765336901834616516775, 18.05690851492317029413223081096, 19.09129000257841166656263878855, 20.33865305059036499167934825496, 20.62772882643711600109378880563, 22.01752912257398983660881706337, 22.642040096122393337520681799774, 23.263190507210647645455072356010, 24.83739295465349092652850947791, 25.60826569435650489433995771377