L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.5 + 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s − i·21-s + (0.866 − 0.5i)23-s − i·27-s + (0.5 + 0.866i)29-s − i·31-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)37-s + (0.866 − 0.5i)41-s + (−0.866 − 0.5i)43-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.5 + 0.866i)7-s + (0.5 − 0.866i)9-s + (0.866 − 0.5i)11-s + (−0.866 − 0.5i)17-s + (−0.866 − 0.5i)19-s − i·21-s + (0.866 − 0.5i)23-s − i·27-s + (0.5 + 0.866i)29-s − i·31-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)37-s + (0.866 − 0.5i)41-s + (−0.866 − 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.868 + 0.496i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.868 + 0.496i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.176588553 + 0.3126283321i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.176588553 + 0.3126283321i\) |
\(L(1)\) |
\(\approx\) |
\(0.8181400540 + 0.1392047768i\) |
\(L(1)\) |
\(\approx\) |
\(0.8181400540 + 0.1392047768i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.866 + 0.5i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.3753925074250948543144050901, −24.6912412904959173464687376083, −23.46752930229727595065229192448, −23.065566714680387807967389879134, −22.140725692741031678105518750154, −21.146166129413205400831175106661, −19.71188008038624308543223871736, −19.34201640603230169587210189335, −17.968704442475110315028147573914, −17.21296001585906584334105018434, −16.59296843381139077303844807801, −15.43873049787986152917397371307, −14.1853783551156643073211992282, −13.12390810392248584016362612747, −12.45328592396924664347316396529, −11.28040303455125720797753538927, −10.49951634833287401356883095403, −9.40450524056959562177922654333, −7.95244091476010517625326870950, −6.80541834307556519392428390609, −6.30007972294808970119858637731, −4.79365082525898523600116909679, −3.81383552698561334445371343995, −1.96911324996443159274308149573, −0.71027992925788482619386334832,
0.72716522764090575021804377744, 2.58275824513833893095831272142, 3.96959140224675530470274649620, 5.057528605963698931943489875239, 6.184841659015656128052189521383, 6.845790381206139029149763616723, 8.755126542282545346711999002390, 9.33331646768923479871236356098, 10.62311050923884168797042587054, 11.47872498082032906868698877828, 12.32491673912847595602946493279, 13.33481562688364287564175748551, 14.80776695354856646702812089537, 15.53492788222630022517097321309, 16.49343968636314731869327533139, 17.24655630554638215098903463906, 18.31764270307869965573979615714, 19.1577198900454892553053292803, 20.311613415898672923024845578958, 21.50532754576557093946118822415, 22.08709872803773150390079633666, 22.77036675910552276230671383260, 23.88189726438720570102661262797, 24.762194035697102881953326679309, 25.74051514270216838898466501232