L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s − 31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.5 − 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.5 + 0.866i)7-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + 21-s + (−0.5 − 0.866i)23-s + 27-s + (−0.5 − 0.866i)29-s − 31-s + (0.5 − 0.866i)33-s + (0.5 + 0.866i)37-s + (−0.5 − 0.866i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 260 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2885759358 - 0.7030505628i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2885759358 - 0.7030505628i\) |
\(L(1)\) |
\(\approx\) |
\(0.7514693133 - 0.2065287920i\) |
\(L(1)\) |
\(\approx\) |
\(0.7514693133 - 0.2065287920i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.19527794669762808745980951008, −25.276042629941106826768175522651, −23.83897789979334752478204549919, −23.31984571978397353618489714361, −22.18510526378169346143424979026, −21.66089139696240779688799207518, −20.50267929661282377156224258902, −19.76720807565577522350163900603, −18.621054308611217717510200059956, −17.37396774671885960045294798791, −16.59898712694255980938198671572, −16.070821327741838824464125011149, −14.77458313331366796222382616899, −13.96834955388914816241810959729, −12.72757038045922987531295631611, −11.604268377501230513311106828265, −10.68606755856916890479441581533, −9.89612882865615631128414429330, −8.90543674038937202679084585922, −7.55487821229084681473018456835, −6.24171870727706667629892544603, −5.44318374104045096751317105357, −3.89994548195744032694342757030, −3.45153389174854209470425226127, −1.20538312935117085435346630322,
0.278111294396310026704286469044, 1.83803975685569043600676770600, 2.92408750837919974313455999420, 4.71021982949957055847880718052, 5.78739176536956209805376497376, 6.74563369633834846275402480002, 7.65023351702982654601709012308, 8.9529744555456851595967365642, 9.92145131698652958594106025386, 11.376794591220956877308827698488, 12.091374988662927994411119626127, 12.85855952549254429633058750783, 13.90093586081889649494099060926, 15.029439665313085475719028860843, 16.11727238304377802194286941454, 17.057016991896340208696079720356, 18.09675821570934353825854560449, 18.668325712753251772266076987569, 19.67734447713526802675426032693, 20.57557391927709223555199408026, 22.136518087079729998872561700602, 22.4484849713647457451200210837, 23.5062736942998162772401638248, 24.49323407029958271606770195032, 25.20685841640172445560692351654