Properties

Label 1-2557-2557.2556-r0-0-0
Degree $1$
Conductor $2557$
Sign $1$
Analytic cond. $11.8746$
Root an. cond. $11.8746$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s + 11-s + 12-s + 13-s − 14-s − 15-s + 16-s − 17-s − 18-s + 19-s − 20-s + 21-s − 22-s + 23-s − 24-s + 25-s − 26-s + 27-s + 28-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s + 11-s + 12-s + 13-s − 14-s − 15-s + 16-s − 17-s − 18-s + 19-s − 20-s + 21-s − 22-s + 23-s − 24-s + 25-s − 26-s + 27-s + 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2557 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2557 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(2557\)
Sign: $1$
Analytic conductor: \(11.8746\)
Root analytic conductor: \(11.8746\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2557} (2556, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 2557,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.877755738\)
\(L(\frac12)\) \(\approx\) \(1.877755738\)
\(L(1)\) \(\approx\) \(1.132835953\)
\(L(1)\) \(\approx\) \(1.132835953\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2557 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 - T \)
19 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 + T \)
79 \( 1 - T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.60437210626979167236588796413, −18.54716156094938397138697745289, −18.305873042911115682225930163344, −17.423388266273574797236773776988, −16.43699328305703638196163030835, −15.92210679399691556722463571312, −15.03527097267797298705529008403, −14.816628629130935308775976952553, −13.83893542021966127287902194743, −12.94561438906060313901040869454, −11.88104135462107296121845605354, −11.3913486467663232224304858676, −10.80778911212794565111609973780, −9.77893501578325179201024352551, −8.90851137411109668547551005098, −8.51836586460964053230176545967, −7.97630798987089795996131412672, −7.03916783777912482868418635510, −6.69150343040606620737936126529, −5.20944913637347047846780760666, −4.172113710842152218700826244197, −3.51000540579626862300503171434, −2.65102069296346843896328768532, −1.54404532891242607329457580871, −1.016557011659931342400813744530, 1.016557011659931342400813744530, 1.54404532891242607329457580871, 2.65102069296346843896328768532, 3.51000540579626862300503171434, 4.172113710842152218700826244197, 5.20944913637347047846780760666, 6.69150343040606620737936126529, 7.03916783777912482868418635510, 7.97630798987089795996131412672, 8.51836586460964053230176545967, 8.90851137411109668547551005098, 9.77893501578325179201024352551, 10.80778911212794565111609973780, 11.3913486467663232224304858676, 11.88104135462107296121845605354, 12.94561438906060313901040869454, 13.83893542021966127287902194743, 14.816628629130935308775976952553, 15.03527097267797298705529008403, 15.92210679399691556722463571312, 16.43699328305703638196163030835, 17.423388266273574797236773776988, 18.305873042911115682225930163344, 18.54716156094938397138697745289, 19.60437210626979167236588796413

Graph of the $Z$-function along the critical line