L(s) = 1 | + (−0.5 − 0.866i)5-s + (−0.5 + 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)29-s + 31-s + (−0.5 + 0.866i)37-s + (−0.5 + 0.866i)41-s + (0.5 + 0.866i)43-s − 47-s + (0.5 + 0.866i)53-s + 55-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)5-s + (−0.5 + 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)17-s + (−0.5 + 0.866i)19-s + (−0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)29-s + 31-s + (−0.5 + 0.866i)37-s + (−0.5 + 0.866i)41-s + (0.5 + 0.866i)43-s − 47-s + (0.5 + 0.866i)53-s + 55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.458 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.458 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2484478681 + 0.4075206943i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2484478681 + 0.4075206943i\) |
\(L(1)\) |
\(\approx\) |
\(0.7907034266 - 0.03781058501i\) |
\(L(1)\) |
\(\approx\) |
\(0.7907034266 - 0.03781058501i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.87505773217464799117902871503, −24.30705071808903533900624913267, −23.70160682374584608275684235764, −22.793912248357329479705600350284, −21.705316685934601426282161118979, −21.15564741682697162593537694495, −19.57451070146478598870594766707, −19.164166201209901754844013129495, −18.13929549531195033645475749197, −17.16545075392343735713844445175, −15.86229437960432378520807958950, −15.34159520306584521142761188769, −14.069698516924633252426659533758, −13.38580875714753798116911669724, −11.94303176598986172514225018469, −11.10664543861043454366244513065, −10.347190709027036637386486871448, −8.90655364188514677856921073268, −7.97954770557799207887553889220, −6.79278164887131216835646457803, −5.945142777472883732438476287996, −4.348531599335571830444611368905, −3.34728069849768380191016065454, −2.078568792008952522269063120991, −0.15591989955179243436356448824,
1.2973809522454353692044145328, 2.86564603234880974206475568883, 4.31676739604396183493955386505, 5.11049723001625909465004162929, 6.4703793498766130039048479589, 7.818412974242298233275190696190, 8.49287272280258096259417276368, 9.74126623568093585094636656762, 10.737788132536120400453885828, 12.03520689411020001081330229619, 12.68819507151495308017419205569, 13.6711048615128556147193154249, 15.015727492879536005667433869486, 15.80284613640714156745184781966, 16.63826873484480193582576266721, 17.76665562146938067870346823840, 18.57518332635985411566792185738, 19.914316697754158948915890919457, 20.42450816477675436400557270721, 21.26249871841605852003621282149, 22.749117085366976714740208437654, 23.1699871152372641375766592005, 24.34183406456582302972488646997, 25.056935459775185846612440046635, 26.001162804959397480640875179606