| L(s) = 1 | + (−0.382 − 0.923i)5-s + (0.258 − 0.965i)7-s + (−0.130 + 0.991i)11-s + (0.866 − 0.5i)17-s + (−0.991 + 0.130i)19-s + (−0.965 + 0.258i)23-s + (−0.707 + 0.707i)25-s + (0.608 + 0.793i)29-s − i·31-s + (−0.991 + 0.130i)35-s + (−0.991 − 0.130i)37-s + (0.258 + 0.965i)41-s + (−0.608 + 0.793i)43-s − 47-s + (−0.866 − 0.5i)49-s + ⋯ |
| L(s) = 1 | + (−0.382 − 0.923i)5-s + (0.258 − 0.965i)7-s + (−0.130 + 0.991i)11-s + (0.866 − 0.5i)17-s + (−0.991 + 0.130i)19-s + (−0.965 + 0.258i)23-s + (−0.707 + 0.707i)25-s + (0.608 + 0.793i)29-s − i·31-s + (−0.991 + 0.130i)35-s + (−0.991 − 0.130i)37-s + (0.258 + 0.965i)41-s + (−0.608 + 0.793i)43-s − 47-s + (−0.866 − 0.5i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1282636603 + 0.2076255170i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1282636603 + 0.2076255170i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8003370860 - 0.1397693556i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8003370860 - 0.1397693556i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.382 - 0.923i)T \) |
| 7 | \( 1 + (0.258 - 0.965i)T \) |
| 11 | \( 1 + (-0.130 + 0.991i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.991 + 0.130i)T \) |
| 23 | \( 1 + (-0.965 + 0.258i)T \) |
| 29 | \( 1 + (0.608 + 0.793i)T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 + (-0.991 - 0.130i)T \) |
| 41 | \( 1 + (0.258 + 0.965i)T \) |
| 43 | \( 1 + (-0.608 + 0.793i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.382 + 0.923i)T \) |
| 59 | \( 1 + (0.608 - 0.793i)T \) |
| 61 | \( 1 + (-0.991 + 0.130i)T \) |
| 67 | \( 1 + (-0.793 + 0.608i)T \) |
| 71 | \( 1 + (0.258 - 0.965i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (-0.382 + 0.923i)T \) |
| 89 | \( 1 + (-0.965 + 0.258i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.35544145584723593147846940615, −18.533412415970826573576725808351, −18.00445564590046879025809613645, −17.16080402851190538981470263818, −16.233627494136808936997861092941, −15.603330391539993836691813484854, −14.96469185082302374437451971675, −14.28262295509274955428931991330, −13.69793892916210170721495058860, −12.562348417690170809368830801336, −11.97257878996573790694191645491, −11.33316523621543606880531150372, −10.48164452251938322229448888616, −10.02648614076216332994406906764, −8.637984354688906556930146799236, −8.43373644039185563688296394482, −7.51206681897197818995375956000, −6.499980635147822166237725960715, −5.979249965191988166774717358385, −5.169373521765765822251212215978, −4.03589743395079080264117758348, −3.29083690533739747708006852156, −2.531069121480294987652621623886, −1.66937647692378981451363282952, −0.078506490335927813576908248686,
1.182546968201495222492286287738, 1.86744202785723392628357198013, 3.16616132366592437948894933815, 4.157108389461696721613269049996, 4.58397331936292415319173872903, 5.39408488928474869699950782119, 6.444402918132529110489007700030, 7.37521092709780169231991708952, 7.89583294113273623309102678182, 8.606174963589823353450021324463, 9.677759314685442561679505182649, 10.091038727412039236029799106686, 11.05187068783235286216941689730, 11.87583271358504066664137135978, 12.50078064078231773153470739872, 13.15692716615775844970310393524, 13.93908639320523051099162828862, 14.71012260184340794640048035782, 15.41680629438411879136252843322, 16.39995336217868402671419267774, 16.66128969532279102715621489996, 17.562273749661017850602779407474, 18.07699194897748535312136564098, 19.17285626754754371964571367228, 19.809549751804688130145336577440