L(s) = 1 | + (−0.563 − 0.826i)2-s + (0.680 + 0.733i)3-s + (−0.365 + 0.930i)4-s + (0.222 − 0.974i)6-s + (0.974 − 0.222i)8-s + (−0.0747 + 0.997i)9-s + (0.0747 + 0.997i)11-s + (−0.930 + 0.365i)12-s + (−0.433 + 0.900i)13-s + (−0.733 − 0.680i)16-s + (0.149 − 0.988i)17-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s + (0.781 − 0.623i)22-s + (−0.149 − 0.988i)23-s + (0.826 + 0.563i)24-s + ⋯ |
L(s) = 1 | + (−0.563 − 0.826i)2-s + (0.680 + 0.733i)3-s + (−0.365 + 0.930i)4-s + (0.222 − 0.974i)6-s + (0.974 − 0.222i)8-s + (−0.0747 + 0.997i)9-s + (0.0747 + 0.997i)11-s + (−0.930 + 0.365i)12-s + (−0.433 + 0.900i)13-s + (−0.733 − 0.680i)16-s + (0.149 − 0.988i)17-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s + (0.781 − 0.623i)22-s + (−0.149 − 0.988i)23-s + (0.826 + 0.563i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.561 + 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.561 + 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8658653895 + 0.4587767121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8658653895 + 0.4587767121i\) |
\(L(1)\) |
\(\approx\) |
\(0.9134617615 + 0.1156711869i\) |
\(L(1)\) |
\(\approx\) |
\(0.9134617615 + 0.1156711869i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.563 - 0.826i)T \) |
| 3 | \( 1 + (0.680 + 0.733i)T \) |
| 11 | \( 1 + (0.0747 + 0.997i)T \) |
| 13 | \( 1 + (-0.433 + 0.900i)T \) |
| 17 | \( 1 + (0.149 - 0.988i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.149 - 0.988i)T \) |
| 29 | \( 1 + (-0.623 + 0.781i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.930 - 0.365i)T \) |
| 41 | \( 1 + (0.222 + 0.974i)T \) |
| 43 | \( 1 + (-0.974 - 0.222i)T \) |
| 47 | \( 1 + (0.563 + 0.826i)T \) |
| 53 | \( 1 + (0.930 + 0.365i)T \) |
| 59 | \( 1 + (0.955 - 0.294i)T \) |
| 61 | \( 1 + (-0.365 - 0.930i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (0.563 - 0.826i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.433 + 0.900i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.883470408190599351863988514873, −25.11377915432292065586530832307, −24.1984520193820558951070958455, −23.752070453682320116197627427333, −22.54080236435537251841945482489, −21.30200696034388869937841283768, −19.910649385236478282692591448432, −19.3865773029182603754476621641, −18.52907402098925596292064181582, −17.54961097809921208226369827573, −16.82292365699444623080717336268, −15.35575041440776724440476579315, −14.91797548233900121654105328155, −13.64445450685303081335637876878, −13.1090248897189668706979203263, −11.57397194825327440870839550138, −10.29361148599554113718409033156, −9.181511465579555161715582953215, −8.26532632874755840956871187025, −7.587588771924600711335099038163, −6.40895051196679562437833228135, −5.546666375605639662659254947292, −3.819605510690488716188835403683, −2.2977789560338769464801200730, −0.79191730726466424431272204233,
1.81997788408183767749633082326, 2.801251683216596924744809429033, 4.089207370301987789442691351224, 4.85432571986501287801067461813, 6.99369469395133263786787104684, 8.04339647184959109200791429233, 9.11505771020936321920095263541, 9.79331543719385169129457345909, 10.6560484430086601034318055924, 11.82532883906520869508336315371, 12.77504671238080199286814150826, 14.0215145721667221917292525367, 14.802027212026674182760283116656, 16.2191524888345837308007959072, 16.804651711305623116462088896004, 18.11105796062022394247172550585, 18.97770608935231600328473737913, 19.96133762248436006851928575440, 20.580388184842656664026098741577, 21.400622473644389432769625185392, 22.26228267738325418000503237901, 23.17132774741668845446004293276, 24.88916768086029133916043063870, 25.54034302441804846043116572332, 26.53459076952504088004685261952