L(s) = 1 | + (0.294 + 0.955i)2-s + (−0.930 + 0.365i)3-s + (−0.826 + 0.563i)4-s + (−0.623 − 0.781i)6-s + (−0.781 − 0.623i)8-s + (0.733 − 0.680i)9-s + (−0.733 − 0.680i)11-s + (0.563 − 0.826i)12-s + (−0.974 − 0.222i)13-s + (0.365 − 0.930i)16-s + (−0.997 − 0.0747i)17-s + (0.866 + 0.5i)18-s + (−0.5 − 0.866i)19-s + (0.433 − 0.900i)22-s + (0.997 − 0.0747i)23-s + (0.955 + 0.294i)24-s + ⋯ |
L(s) = 1 | + (0.294 + 0.955i)2-s + (−0.930 + 0.365i)3-s + (−0.826 + 0.563i)4-s + (−0.623 − 0.781i)6-s + (−0.781 − 0.623i)8-s + (0.733 − 0.680i)9-s + (−0.733 − 0.680i)11-s + (0.563 − 0.826i)12-s + (−0.974 − 0.222i)13-s + (0.365 − 0.930i)16-s + (−0.997 − 0.0747i)17-s + (0.866 + 0.5i)18-s + (−0.5 − 0.866i)19-s + (0.433 − 0.900i)22-s + (0.997 − 0.0747i)23-s + (0.955 + 0.294i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.738 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.738 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3566845444 - 0.1382204851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3566845444 - 0.1382204851i\) |
\(L(1)\) |
\(\approx\) |
\(0.5820898119 + 0.2394873469i\) |
\(L(1)\) |
\(\approx\) |
\(0.5820898119 + 0.2394873469i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.294 + 0.955i)T \) |
| 3 | \( 1 + (-0.930 + 0.365i)T \) |
| 11 | \( 1 + (-0.733 - 0.680i)T \) |
| 13 | \( 1 + (-0.974 - 0.222i)T \) |
| 17 | \( 1 + (-0.997 - 0.0747i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.997 - 0.0747i)T \) |
| 29 | \( 1 + (0.900 - 0.433i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.563 + 0.826i)T \) |
| 41 | \( 1 + (-0.623 + 0.781i)T \) |
| 43 | \( 1 + (0.781 - 0.623i)T \) |
| 47 | \( 1 + (-0.294 - 0.955i)T \) |
| 53 | \( 1 + (-0.563 - 0.826i)T \) |
| 59 | \( 1 + (-0.988 + 0.149i)T \) |
| 61 | \( 1 + (-0.826 - 0.563i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.900 - 0.433i)T \) |
| 73 | \( 1 + (-0.294 + 0.955i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.974 - 0.222i)T \) |
| 89 | \( 1 + (-0.733 + 0.680i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.60958458045617218049756745454, −25.05512869987425605834869880565, −24.053382578839137783449384770509, −23.2321023902079394658663207044, −22.579096633468052461270327647213, −21.64312381488789538638561847671, −20.85497565929935230807707251749, −19.619762982641418814921753058119, −18.91335572489424077114402539070, −17.82844412672512158599526431040, −17.30925620589986894250542934595, −15.89118693399251640313478947801, −14.75379147369837912438790755823, −13.56486104547646528628548921369, −12.558351313703061659052572887373, −12.12605003362151380069768663085, −10.82328096044015685092651116792, −10.31241803264275178958328708024, −9.04775003255072275755990636816, −7.55446009836532284462130141085, −6.34575460017368103486882320401, −5.0775113756164521640985387876, −4.44330031389897791271690755663, −2.677187201649536542406945878305, −1.55439963313996382305728230971,
0.27689382865914029010634705372, 2.92664773912408678834153049963, 4.49765285212278588517036359509, 5.10308496388493942315445814127, 6.262769043247283838018571925396, 7.08518794283687644403157510973, 8.362752949304806948525093731154, 9.49718688107224666718801185613, 10.63054787725788837621438656925, 11.74792488779973245573496877236, 12.85283148955669815382264314594, 13.63905290290268370917911380564, 15.16397362896791281988831861634, 15.5308627286066106055337181879, 16.70325637080233025965548607898, 17.32055386467740119395999054370, 18.17237481101802674727187589127, 19.25517124300747069089815228777, 20.88870692034594393206600160066, 21.76081483631574408718681636855, 22.38409258889401782872302732914, 23.34946318760504163940349735778, 24.10163315279427929113749144029, 24.8043638020620228064443585694, 26.18079365026837540645514177