Properties

Label 1-240-240.227-r1-0-0
Degree $1$
Conductor $240$
Sign $0.584 + 0.811i$
Analytic cond. $25.7915$
Root an. cond. $25.7915$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·7-s i·11-s + 13-s i·17-s + i·19-s + i·23-s + i·29-s − 31-s + 37-s + 41-s + 43-s + i·47-s − 49-s + 53-s + i·59-s + ⋯
L(s)  = 1  + i·7-s i·11-s + 13-s i·17-s + i·19-s + i·23-s + i·29-s − 31-s + 37-s + 41-s + 43-s + i·47-s − 49-s + 53-s + i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $0.584 + 0.811i$
Analytic conductor: \(25.7915\)
Root analytic conductor: \(25.7915\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (227, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 240,\ (1:\ ),\ 0.584 + 0.811i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.635299016 + 0.8371394824i\)
\(L(\frac12)\) \(\approx\) \(1.635299016 + 0.8371394824i\)
\(L(1)\) \(\approx\) \(1.132334851 + 0.1837526503i\)
\(L(1)\) \(\approx\) \(1.132334851 + 0.1837526503i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 \)
11 \( 1 \)
13 \( 1 \)
17 \( 1 \)
19 \( 1 + iT \)
23 \( 1 \)
29 \( 1 \)
31 \( 1 \)
37 \( 1 - iT \)
41 \( 1 \)
43 \( 1 + T \)
47 \( 1 \)
53 \( 1 \)
59 \( 1 \)
61 \( 1 - iT \)
67 \( 1 \)
71 \( 1 + iT \)
73 \( 1 \)
79 \( 1 \)
83 \( 1 \)
89 \( 1 + iT \)
97 \( 1 \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−26.04965978006639919169387527608, −24.94666945802999037445929107953, −23.771530394091276565977493151022, −23.206392069070179786789647584295, −22.231079335132232689967262998881, −21.04186471354191261241415142898, −20.26578768046850379216804104585, −19.47045981392231103797943017698, −18.222830080685111104321817468, −17.39639005070992714358944701634, −16.50330692783588430690027345388, −15.40553763219103385067247694614, −14.46336163613413856142716413012, −13.35455142925447921463580352559, −12.63335553227036713024693856642, −11.21029847652039630258621583399, −10.4700350196212049481224214758, −9.36746434828114778488372064381, −8.14573538973047058714189378339, −7.112628980026707230692422115450, −6.119356949456832656512220751710, −4.58838657056320703633670128927, −3.76434797227200077707919640544, −2.13064428244546652993171754803, −0.691730328213957375716542649984, 1.17435624206612555503805095663, 2.7062878592133200723299586384, 3.80516048151390820815877562248, 5.44054623464780956599534578108, 6.06330952045021560882620802710, 7.55083718207954576487158874209, 8.67287561409507563396018740962, 9.4127945155040995748423764259, 10.87606663623303646444782334960, 11.63879636835045480775313580456, 12.73215287712551204132785147624, 13.776835034792682778489168165731, 14.7196097634218867483583651545, 15.94265373662906456118329303325, 16.40320286901007101012210248880, 17.97467583438726641739159812349, 18.53415738638468113379032928286, 19.46544240469290585812154536853, 20.70832683954966057684908459433, 21.459615721221380374144874072957, 22.3456293114110479096347616038, 23.348265256082797725584061520253, 24.33582004063397806584274799811, 25.220473921467708583247442241134, 25.91551865155845505465711863110

Graph of the $Z$-function along the critical line