Properties

Label 1-23-23.6-r0-0-0
Degree 11
Conductor 2323
Sign 0.8540.519i0.854 - 0.519i
Analytic cond. 0.1068110.106811
Root an. cond. 0.1068110.106811
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.654 − 0.755i)2-s + (0.841 + 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (−0.142 − 0.989i)6-s + (−0.959 − 0.281i)7-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (−0.654 + 0.755i)11-s + (−0.654 + 0.755i)12-s + (−0.959 + 0.281i)13-s + (0.415 + 0.909i)14-s + (0.841 − 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + ⋯
L(s)  = 1  + (−0.654 − 0.755i)2-s + (0.841 + 0.540i)3-s + (−0.142 + 0.989i)4-s + (0.415 − 0.909i)5-s + (−0.142 − 0.989i)6-s + (−0.959 − 0.281i)7-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (−0.959 + 0.281i)10-s + (−0.654 + 0.755i)11-s + (−0.654 + 0.755i)12-s + (−0.959 + 0.281i)13-s + (0.415 + 0.909i)14-s + (0.841 − 0.540i)15-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + ⋯

Functional equation

Λ(s)=(23s/2ΓR(s)L(s)=((0.8540.519i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(23s/2ΓR(s)L(s)=((0.8540.519i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 2323
Sign: 0.8540.519i0.854 - 0.519i
Analytic conductor: 0.1068110.106811
Root analytic conductor: 0.1068110.106811
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ23(6,)\chi_{23} (6, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 23, (0: ), 0.8540.519i)(1,\ 23,\ (0:\ ),\ 0.854 - 0.519i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.59369539190.1662737264i0.5936953919 - 0.1662737264i
L(12)L(\frac12) \approx 0.59369539190.1662737264i0.5936953919 - 0.1662737264i
L(1)L(1) \approx 0.80441747820.1800159172i0.8044174782 - 0.1800159172i
L(1)L(1) \approx 0.80441747820.1800159172i0.8044174782 - 0.1800159172i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad23 1 1
good2 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
3 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
5 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
7 1+(0.9590.281i)T 1 + (-0.959 - 0.281i)T
11 1+(0.654+0.755i)T 1 + (-0.654 + 0.755i)T
13 1+(0.959+0.281i)T 1 + (-0.959 + 0.281i)T
17 1+(0.1420.989i)T 1 + (-0.142 - 0.989i)T
19 1+(0.142+0.989i)T 1 + (-0.142 + 0.989i)T
29 1+(0.1420.989i)T 1 + (-0.142 - 0.989i)T
31 1+(0.8410.540i)T 1 + (0.841 - 0.540i)T
37 1+(0.415+0.909i)T 1 + (0.415 + 0.909i)T
41 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
43 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
47 1+T 1 + T
53 1+(0.9590.281i)T 1 + (-0.959 - 0.281i)T
59 1+(0.959+0.281i)T 1 + (-0.959 + 0.281i)T
61 1+(0.8410.540i)T 1 + (0.841 - 0.540i)T
67 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
71 1+(0.6540.755i)T 1 + (-0.654 - 0.755i)T
73 1+(0.142+0.989i)T 1 + (-0.142 + 0.989i)T
79 1+(0.959+0.281i)T 1 + (-0.959 + 0.281i)T
83 1+(0.415+0.909i)T 1 + (0.415 + 0.909i)T
89 1+(0.841+0.540i)T 1 + (0.841 + 0.540i)T
97 1+(0.4150.909i)T 1 + (0.415 - 0.909i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−38.700408365765894581394546516791, −37.374582052745730403293364755146, −36.73684444152570151931867284665, −35.19931983131626181222038711038, −34.39659421649262485665831178230, −32.686616841364382480753785584274, −31.68697678664476224776710908677, −29.90051658251202674860051032003, −28.79736871063084622912026153343, −26.68424173530906038326597384210, −26.03410951890411644829689228165, −24.959998697416946641111554588972, −23.61823174774936248044005691048, −21.899117064346872748693005649887, −19.63149511760766360944426352873, −18.86079323503127356346653185205, −17.60123837809627875346084807219, −15.65730440476089251256326484275, −14.4875947273727442066818885853, −13.12631838826265572682657003615, −10.40381591166334108468080526150, −9.0236073970210270980590936589, −7.386736091739146298255844220707, −6.13271706638252198914368019481, −2.695063685459656135537545911260, 2.47039178966832528664961712539, 4.432117621973441540755241160510, 7.720799325920089958960128054403, 9.39325673406057682914387718310, 10.03959677418238791346100433673, 12.425109771331570931137449711022, 13.61944875373012828405910231195, 15.89863210493409896148305765933, 17.07638010143655944598506026097, 18.98899807308690491928557869720, 20.21715299352348244292115288302, 20.977937859874896897254665650164, 22.4678459530138552535662630855, 24.93649520853625830521165936466, 25.9574329561884069176049822057, 27.13223980683776795140294166042, 28.50879775493850333463910445784, 29.53655072465957060785288875489, 31.32056718767089627329744047203, 32.1091735901850118059187416565, 33.703928987552825404236293326258, 35.938907075447944483317436388978, 36.27341873101567924360620203011, 37.635050660222910611763365632394, 38.82904969900439216797491855283

Graph of the ZZ-function along the critical line