L(s) = 1 | + (−0.654 + 0.755i)2-s + (0.841 − 0.540i)3-s + (−0.142 − 0.989i)4-s + (−0.415 − 0.909i)5-s + (−0.142 + 0.989i)6-s + (0.959 − 0.281i)7-s + (0.841 + 0.540i)8-s + (0.415 − 0.909i)9-s + (0.959 + 0.281i)10-s + (0.654 + 0.755i)11-s + (−0.654 − 0.755i)12-s + (−0.959 − 0.281i)13-s + (−0.415 + 0.909i)14-s + (−0.841 − 0.540i)15-s + (−0.959 + 0.281i)16-s + (0.142 − 0.989i)17-s + ⋯ |
L(s) = 1 | + (−0.654 + 0.755i)2-s + (0.841 − 0.540i)3-s + (−0.142 − 0.989i)4-s + (−0.415 − 0.909i)5-s + (−0.142 + 0.989i)6-s + (0.959 − 0.281i)7-s + (0.841 + 0.540i)8-s + (0.415 − 0.909i)9-s + (0.959 + 0.281i)10-s + (0.654 + 0.755i)11-s + (−0.654 − 0.755i)12-s + (−0.959 − 0.281i)13-s + (−0.415 + 0.909i)14-s + (−0.841 − 0.540i)15-s + (−0.959 + 0.281i)16-s + (0.142 − 0.989i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.915 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.915 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.193390215 - 0.2513170686i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193390215 - 0.2513170686i\) |
\(L(1)\) |
\(\approx\) |
\(1.024776888 - 0.06836387700i\) |
\(L(1)\) |
\(\approx\) |
\(1.024776888 - 0.06836387700i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 23 | \( 1 \) |
good | 2 | \( 1 + (-0.654 + 0.755i)T \) |
| 3 | \( 1 + (0.841 - 0.540i)T \) |
| 5 | \( 1 + (-0.415 - 0.909i)T \) |
| 7 | \( 1 + (0.959 - 0.281i)T \) |
| 11 | \( 1 + (0.654 + 0.755i)T \) |
| 13 | \( 1 + (-0.959 - 0.281i)T \) |
| 17 | \( 1 + (0.142 - 0.989i)T \) |
| 19 | \( 1 + (0.142 + 0.989i)T \) |
| 29 | \( 1 + (-0.142 + 0.989i)T \) |
| 31 | \( 1 + (0.841 + 0.540i)T \) |
| 37 | \( 1 + (-0.415 + 0.909i)T \) |
| 41 | \( 1 + (0.415 + 0.909i)T \) |
| 43 | \( 1 + (-0.841 + 0.540i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.959 - 0.281i)T \) |
| 59 | \( 1 + (-0.959 - 0.281i)T \) |
| 61 | \( 1 + (-0.841 - 0.540i)T \) |
| 67 | \( 1 + (0.654 - 0.755i)T \) |
| 71 | \( 1 + (-0.654 + 0.755i)T \) |
| 73 | \( 1 + (-0.142 - 0.989i)T \) |
| 79 | \( 1 + (0.959 + 0.281i)T \) |
| 83 | \( 1 + (-0.415 + 0.909i)T \) |
| 89 | \( 1 + (-0.841 + 0.540i)T \) |
| 97 | \( 1 + (-0.415 - 0.909i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−38.52346429453796222459047680066, −37.46216404834207596121828809078, −36.85009267046127835910036362665, −35.04956605322416709788179171930, −33.93016426705979391415339165970, −31.97348917347789808407302969171, −30.74581808560397652685458492907, −30.01430159849003592791241125303, −27.988419931107052543334527769683, −26.951390997049195127006939735059, −26.21775611958856808744246734444, −24.55984974550267442921257070393, −22.11537274776449995636983231261, −21.3261356712269760072526249366, −19.71961408220323290488564258838, −18.89371584858930917798322621504, −17.20644616703920879527303097668, −15.28336328858085073315065112200, −13.96328593621444567575480909438, −11.70549832767387652110164846562, −10.489122351861352389188803100170, −8.8795589013945002698155122045, −7.57658983559309863798267647923, −4.06368017958575994735722742671, −2.422807249193995525545659390855,
1.3797846159960658038612160980, 4.76819409837205579260399461408, 7.24691052521206073122623024527, 8.26915988698542440107253097219, 9.63430524416145883796502627340, 12.11256698180227244551608080116, 14.04445956117997645153264879685, 15.140311256924691708540367847441, 16.874925313993120683214553437949, 18.14111882842997627545344585960, 19.725151936370181535441078356765, 20.539451934818267454102740931592, 23.274507660989997587087547744148, 24.53571898560322130309389782054, 25.085663704080201694499223054965, 26.86628733966501129913588702712, 27.70102760915420388331662960571, 29.44533162742435653149063788306, 31.143738407768407904012382129503, 32.202160011262934899636313295659, 33.560340825986917411840731135035, 35.13458641489215004260488820128, 36.15326235998923348993679305748, 36.85880858660055521816147706964, 38.199345952938279834194250800475