Properties

Label 1-229-229.228-r0-0-0
Degree $1$
Conductor $229$
Sign $1$
Analytic cond. $1.06347$
Root an. cond. $1.06347$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s + 11-s + 12-s − 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 19-s + 20-s − 21-s − 22-s − 23-s − 24-s + 25-s + 26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 7-s − 8-s + 9-s − 10-s + 11-s + 12-s − 13-s + 14-s + 15-s + 16-s + 17-s − 18-s + 19-s + 20-s − 21-s − 22-s − 23-s − 24-s + 25-s + 26-s + 27-s − 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 229 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 229 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(229\)
Sign: $1$
Analytic conductor: \(1.06347\)
Root analytic conductor: \(1.06347\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{229} (228, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 229,\ (0:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.230895546\)
\(L(\frac12)\) \(\approx\) \(1.230895546\)
\(L(1)\) \(\approx\) \(1.075468516\)
\(L(1)\) \(\approx\) \(1.075468516\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad229 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 - T \)
61 \( 1 + T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 - T \)
83 \( 1 + T \)
89 \( 1 - T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−26.18949138511800975866004950295, −25.59769360316515237976889424387, −24.90310001929554511217499706493, −24.176185080088642661483924236213, −22.288549690254344183810255673557, −21.59132033966322428032182789191, −20.37760660657860043486157939872, −19.82757201815480202805369721914, −18.900388335640810399316951521294, −18.0902043555892238933448636873, −16.86567472546333718741589320853, −16.24396807367554434993470683239, −14.88742431338322266792510315610, −14.16919909262047839026186084536, −12.92326293376044943540170690917, −11.943674560809925112465665005834, −10.21793024564495532964696993855, −9.59607587149019623464214149570, −9.132438714426825889537937101772, −7.695169240638416819110578034165, −6.830187081529140607621334276032, −5.69340019193448016576079332556, −3.59121195248544653845483107529, −2.55775806419469608784620593553, −1.43154855808135505725903151598, 1.43154855808135505725903151598, 2.55775806419469608784620593553, 3.59121195248544653845483107529, 5.69340019193448016576079332556, 6.830187081529140607621334276032, 7.695169240638416819110578034165, 9.132438714426825889537937101772, 9.59607587149019623464214149570, 10.21793024564495532964696993855, 11.943674560809925112465665005834, 12.92326293376044943540170690917, 14.16919909262047839026186084536, 14.88742431338322266792510315610, 16.24396807367554434993470683239, 16.86567472546333718741589320853, 18.0902043555892238933448636873, 18.900388335640810399316951521294, 19.82757201815480202805369721914, 20.37760660657860043486157939872, 21.59132033966322428032182789191, 22.288549690254344183810255673557, 24.176185080088642661483924236213, 24.90310001929554511217499706493, 25.59769360316515237976889424387, 26.18949138511800975866004950295

Graph of the $Z$-function along the critical line