L(s) = 1 | + (0.733 − 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.623 + 0.781i)5-s + (−0.623 − 0.781i)8-s + (0.988 + 0.149i)10-s + (0.222 + 0.974i)11-s + (0.733 − 0.680i)13-s + (−0.988 − 0.149i)16-s + (0.0747 + 0.997i)17-s + (0.5 − 0.866i)19-s + (0.826 − 0.563i)20-s + (0.826 + 0.563i)22-s + (0.900 − 0.433i)23-s + (−0.222 + 0.974i)25-s + (0.0747 − 0.997i)26-s + ⋯ |
L(s) = 1 | + (0.733 − 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.623 + 0.781i)5-s + (−0.623 − 0.781i)8-s + (0.988 + 0.149i)10-s + (0.222 + 0.974i)11-s + (0.733 − 0.680i)13-s + (−0.988 − 0.149i)16-s + (0.0747 + 0.997i)17-s + (0.5 − 0.866i)19-s + (0.826 − 0.563i)20-s + (0.826 + 0.563i)22-s + (0.900 − 0.433i)23-s + (−0.222 + 0.974i)25-s + (0.0747 − 0.997i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.713 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.713 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.098906565 - 0.8584671705i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.098906565 - 0.8584671705i\) |
\(L(1)\) |
\(\approx\) |
\(1.647875887 - 0.5210228064i\) |
\(L(1)\) |
\(\approx\) |
\(1.647875887 - 0.5210228064i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.733 - 0.680i)T \) |
| 5 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (0.222 + 0.974i)T \) |
| 13 | \( 1 + (0.733 - 0.680i)T \) |
| 17 | \( 1 + (0.0747 + 0.997i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.900 - 0.433i)T \) |
| 29 | \( 1 + (-0.826 + 0.563i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.826 - 0.563i)T \) |
| 41 | \( 1 + (0.365 - 0.930i)T \) |
| 43 | \( 1 + (0.365 + 0.930i)T \) |
| 47 | \( 1 + (-0.733 + 0.680i)T \) |
| 53 | \( 1 + (-0.826 - 0.563i)T \) |
| 59 | \( 1 + (0.365 + 0.930i)T \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.900 - 0.433i)T \) |
| 73 | \( 1 + (-0.955 + 0.294i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.733 - 0.680i)T \) |
| 89 | \( 1 + (-0.733 - 0.680i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.233609204265216341023342680754, −23.40687438851935688634767867183, −22.55180531564428641782432779942, −21.52309009744165311851695216461, −21.03227813680714723171915987531, −20.244438999170411033665056629478, −18.84500046787095709177795758656, −17.94919753963339447181923883737, −16.82294502702812457720870077542, −16.44097750293449763540927209800, −15.59528929792792018642568653570, −14.297278974130816742150002848568, −13.719582834710261400344387294563, −13.05046987387350303975866967251, −11.93576321350875262786101326626, −11.21144771972224826418506892911, −9.59163339376762216416217595781, −8.805961425093436271123291968252, −7.92915790093331295915279021959, −6.68489536721407058040644997683, −5.82757348860501440540911230871, −5.05946904990776306219869357657, −3.95860359607414551649237777261, −2.8776521004645650898563882531, −1.33025003600244416836167909669,
1.34429523494125158468344035469, 2.44067538379052828196146988773, 3.36259168856014694586704141041, 4.487376294494888683024339089089, 5.6378687126689125889983168919, 6.42095304714696145289399665149, 7.43856306534422249178336404870, 9.074662935846192486257740443722, 9.921674014429144321480234652243, 10.784887493305895575518467250416, 11.416062858328597586577549871698, 12.82588464542391821217954699752, 13.15079414617212383615076328645, 14.40075441034633604075735069898, 14.91397146386256818616962021685, 15.77191891871264424868480655340, 17.30288153159072454262759411690, 18.04060965537821810904464353586, 18.890176865447111322550331732831, 19.80534356263897985450972123343, 20.69007409863953600771610508685, 21.37799173516225526960313315487, 22.43773931113139118747861297304, 22.70666743637821427631051346125, 23.73869825555758270955732193263