L(s) = 1 | + (0.733 + 0.680i)2-s + (0.0747 + 0.997i)4-s + (−0.988 − 0.149i)5-s + (−0.623 + 0.781i)8-s + (−0.623 − 0.781i)10-s + (0.733 + 0.680i)11-s + (−0.955 + 0.294i)13-s + (−0.988 + 0.149i)16-s + (−0.900 + 0.433i)17-s − 19-s + (0.0747 − 0.997i)20-s + (0.0747 + 0.997i)22-s + (−0.0747 − 0.997i)23-s + (0.955 + 0.294i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
L(s) = 1 | + (0.733 + 0.680i)2-s + (0.0747 + 0.997i)4-s + (−0.988 − 0.149i)5-s + (−0.623 + 0.781i)8-s + (−0.623 − 0.781i)10-s + (0.733 + 0.680i)11-s + (−0.955 + 0.294i)13-s + (−0.988 + 0.149i)16-s + (−0.900 + 0.433i)17-s − 19-s + (0.0747 − 0.997i)20-s + (0.0747 + 0.997i)22-s + (−0.0747 − 0.997i)23-s + (0.955 + 0.294i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.03457154632 + 0.8819064493i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.03457154632 + 0.8819064493i\) |
\(L(1)\) |
\(\approx\) |
\(0.8221608924 + 0.6199276668i\) |
\(L(1)\) |
\(\approx\) |
\(0.8221608924 + 0.6199276668i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.733 + 0.680i)T \) |
| 5 | \( 1 + (-0.988 - 0.149i)T \) |
| 11 | \( 1 + (0.733 + 0.680i)T \) |
| 13 | \( 1 + (-0.955 + 0.294i)T \) |
| 17 | \( 1 + (-0.900 + 0.433i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.0747 - 0.997i)T \) |
| 29 | \( 1 + (-0.0747 + 0.997i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.900 + 0.433i)T \) |
| 41 | \( 1 + (-0.988 - 0.149i)T \) |
| 43 | \( 1 + (-0.988 + 0.149i)T \) |
| 47 | \( 1 + (-0.733 - 0.680i)T \) |
| 53 | \( 1 + (0.900 + 0.433i)T \) |
| 59 | \( 1 + (0.365 - 0.930i)T \) |
| 61 | \( 1 + (-0.0747 + 0.997i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.222 + 0.974i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.955 + 0.294i)T \) |
| 89 | \( 1 + (-0.222 - 0.974i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.498803959423969935267102497662, −22.613396627561987493681352305396, −22.064716256761875687271796877903, −21.11718294165871667798825388682, −20.077681475057843875485006031456, −19.42727267295481109914059913166, −18.958861479654784198238197782742, −17.66108808272848486492133788740, −16.541292751995898075510686323471, −15.37709244468767451177765198485, −14.97222917100570481974520216297, −13.868518454717570116611234419350, −13.03432965407245934728487706089, −11.89483178190931011451951244467, −11.52572138358554560888334777912, −10.53342182044400357409538959093, −9.4696099400939973206550862275, −8.38491279392805363777329329568, −7.12683772603174716683701062900, −6.210047239948996559977494550169, −4.93745550553191843895587498805, −4.07478262677494323501984155684, −3.19754616163147258252995175658, −2.03589089462226882740395477957, −0.36817634594610921510259057487,
2.080136146026300758004924116360, 3.44038540351986223094262314558, 4.412663434751213547269403711922, 4.972881565087609208105235552200, 6.69778865547664697502959952306, 6.93784310609502265599368643515, 8.28891429633803861823121289847, 8.86502777141937046315040463880, 10.41051600337021721792447643617, 11.63311492277782726347822452605, 12.28478463740081357720418818584, 12.980657970804111743691535269292, 14.29829313959160628911738003614, 14.939296077590149447838840314184, 15.59096132436770056209729254482, 16.702035724271689684859567314644, 17.18349437414167444446302253571, 18.360744378458940138819759868092, 19.63975165199580788367207650201, 20.11502963935278482535641147412, 21.30114927947134212474205888107, 22.19528216666518375844222690159, 22.82398860429534076162040596282, 23.71324003977183294511763937720, 24.34835167845613706799175402120