L(s) = 1 | + (−0.733 − 0.680i)2-s + (0.0747 + 0.997i)4-s + (−0.988 − 0.149i)5-s + (0.623 − 0.781i)8-s + (0.623 + 0.781i)10-s + (−0.733 − 0.680i)11-s + (0.955 − 0.294i)13-s + (−0.988 + 0.149i)16-s + (−0.900 + 0.433i)17-s + 19-s + (0.0747 − 0.997i)20-s + (0.0747 + 0.997i)22-s + (0.0747 + 0.997i)23-s + (0.955 + 0.294i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
L(s) = 1 | + (−0.733 − 0.680i)2-s + (0.0747 + 0.997i)4-s + (−0.988 − 0.149i)5-s + (0.623 − 0.781i)8-s + (0.623 + 0.781i)10-s + (−0.733 − 0.680i)11-s + (0.955 − 0.294i)13-s + (−0.988 + 0.149i)16-s + (−0.900 + 0.433i)17-s + 19-s + (0.0747 − 0.997i)20-s + (0.0747 + 0.997i)22-s + (0.0747 + 0.997i)23-s + (0.955 + 0.294i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0782i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01174611201 - 0.2996386636i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01174611201 - 0.2996386636i\) |
\(L(1)\) |
\(\approx\) |
\(0.4770235551 - 0.2131557858i\) |
\(L(1)\) |
\(\approx\) |
\(0.4770235551 - 0.2131557858i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.733 - 0.680i)T \) |
| 5 | \( 1 + (-0.988 - 0.149i)T \) |
| 11 | \( 1 + (-0.733 - 0.680i)T \) |
| 13 | \( 1 + (0.955 - 0.294i)T \) |
| 17 | \( 1 + (-0.900 + 0.433i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.0747 + 0.997i)T \) |
| 29 | \( 1 + (0.0747 - 0.997i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.900 + 0.433i)T \) |
| 41 | \( 1 + (-0.988 - 0.149i)T \) |
| 43 | \( 1 + (-0.988 + 0.149i)T \) |
| 47 | \( 1 + (-0.733 - 0.680i)T \) |
| 53 | \( 1 + (-0.900 - 0.433i)T \) |
| 59 | \( 1 + (0.365 - 0.930i)T \) |
| 61 | \( 1 + (0.0747 - 0.997i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.900 - 0.433i)T \) |
| 73 | \( 1 + (-0.222 - 0.974i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.955 + 0.294i)T \) |
| 89 | \( 1 + (-0.222 - 0.974i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.463946960964592139081293586510, −23.67650946681000294060845987689, −23.06992329704603884787438227721, −22.22855282879026612193836074328, −20.57458912484146936300711053010, −20.17536821490828819294302510838, −19.12371507179584188358877233403, −18.277161630535907605565850380409, −17.831808403893075179504560682618, −16.32911786301602436794746971318, −15.99791560779984869575391381522, −15.15610332653302793628932931299, −14.27495141451850993543961218802, −13.185467225708299385644059619079, −11.93544996273419091061987037564, −10.98481456854913647689996913184, −10.27720076445223391904942201904, −8.98167255604126339457844711989, −8.347166996095770703586284363952, −7.25509272894231102412035709778, −6.735028700066765433518132071931, −5.30598831820565979144925050205, −4.4195623772089149978015682187, −2.97182269400150856189480455718, −1.44742811439305223573654944182,
0.22860656607232158270735438958, 1.65029645760759714089652934043, 3.16789587719542025846444014104, 3.75629366937607698015188862954, 5.09671535198384743366041740093, 6.58480051192499536743681084224, 7.8188562661677309676282004438, 8.27241784750294370480435369845, 9.26940073815792147416031164479, 10.43060823907056872668093823842, 11.28942246902808257467902683596, 11.77609802361960088364879870096, 13.05936007409861673275963473663, 13.568315139699916537257499794491, 15.37241881939492259872547025804, 15.837575042722157652573065950710, 16.750130880573534786066896351941, 17.81392253945560068798976100587, 18.62036120914470614136955024004, 19.28946034637798397831273628482, 20.204880585356400457587333366465, 20.77663098631416146935489531330, 21.79971441725708869464771293175, 22.67418693104571133498665543687, 23.64855573266822176890879451380