L(s) = 1 | + (−0.733 + 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.623 + 0.781i)5-s + (0.623 + 0.781i)8-s + (−0.988 − 0.149i)10-s + (−0.222 − 0.974i)11-s + (−0.733 + 0.680i)13-s + (−0.988 − 0.149i)16-s + (0.0747 + 0.997i)17-s + (−0.5 + 0.866i)19-s + (0.826 − 0.563i)20-s + (0.826 + 0.563i)22-s + (−0.900 + 0.433i)23-s + (−0.222 + 0.974i)25-s + (0.0747 − 0.997i)26-s + ⋯ |
L(s) = 1 | + (−0.733 + 0.680i)2-s + (0.0747 − 0.997i)4-s + (0.623 + 0.781i)5-s + (0.623 + 0.781i)8-s + (−0.988 − 0.149i)10-s + (−0.222 − 0.974i)11-s + (−0.733 + 0.680i)13-s + (−0.988 − 0.149i)16-s + (0.0747 + 0.997i)17-s + (−0.5 + 0.866i)19-s + (0.826 − 0.563i)20-s + (0.826 + 0.563i)22-s + (−0.900 + 0.433i)23-s + (−0.222 + 0.974i)25-s + (0.0747 − 0.997i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.713 + 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.713 + 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2884289614 + 0.7051934675i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2884289614 + 0.7051934675i\) |
\(L(1)\) |
\(\approx\) |
\(0.6355435983 + 0.3810301369i\) |
\(L(1)\) |
\(\approx\) |
\(0.6355435983 + 0.3810301369i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.733 + 0.680i)T \) |
| 5 | \( 1 + (0.623 + 0.781i)T \) |
| 11 | \( 1 + (-0.222 - 0.974i)T \) |
| 13 | \( 1 + (-0.733 + 0.680i)T \) |
| 17 | \( 1 + (0.0747 + 0.997i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.900 + 0.433i)T \) |
| 29 | \( 1 + (0.826 - 0.563i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.826 - 0.563i)T \) |
| 41 | \( 1 + (0.365 - 0.930i)T \) |
| 43 | \( 1 + (0.365 + 0.930i)T \) |
| 47 | \( 1 + (-0.733 + 0.680i)T \) |
| 53 | \( 1 + (0.826 + 0.563i)T \) |
| 59 | \( 1 + (0.365 + 0.930i)T \) |
| 61 | \( 1 + (0.0747 + 0.997i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.955 - 0.294i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.733 - 0.680i)T \) |
| 89 | \( 1 + (-0.733 - 0.680i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.8489303034447418300583605763, −22.57766451610910955258220016927, −21.86019955221654504412435288061, −20.96006263070136522869676595587, −20.13886498981151008081935407702, −19.79773773609407071159288553130, −18.32484735702503369669827313836, −17.83123386971847355205338430532, −17.01582279337093612912099604905, −16.22366022645732849333842615351, −15.16434936371602905556290423343, −13.82753870166484414642523848283, −12.850369381138297626344477301529, −12.35240919536090387734005130602, −11.293837403711641622847727173153, −10.02677949360785814529613228223, −9.69056637125352671930060563055, −8.61918652560996218440544088295, −7.71112532709838935599123021724, −6.67494369843404619153964292893, −5.13994408684880320668171489002, −4.353160789940360038057649167512, −2.74204373232383234220521549931, −1.98271689523981847972659951061, −0.543208271229566320318738214875,
1.53294647413041953138297918533, 2.60628085615636559189889934828, 4.15124661069224849252990725437, 5.7055596210440825690614988132, 6.153842314059583431218015576039, 7.23414511285693141058805648374, 8.159225187304466533278047918081, 9.14973998917729404453427894354, 10.15184731772223975378534092282, 10.695854342397542276488452267113, 11.80515617660744839247536173846, 13.254614662738648186726842388266, 14.315814557828951390070479945946, 14.61793080407588414893468210171, 15.86759419510167182030205091378, 16.65288443211180301700056369153, 17.506583822624902146674245205013, 18.23108961568147854167066871328, 19.1788805164426788248478672417, 19.57626547467002194964438219904, 21.15392196719503111948462247977, 21.73649110136935797036089717769, 22.83415960271365376699415882940, 23.74021647191187060823089988832, 24.46642483051508346845137574145