L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.988 − 0.149i)5-s + (0.623 − 0.781i)8-s + (0.365 − 0.930i)10-s + (−0.733 − 0.680i)11-s + (−0.733 − 0.680i)13-s + (0.623 + 0.781i)16-s + (0.826 + 0.563i)17-s + (−0.5 + 0.866i)19-s + (0.826 + 0.563i)20-s + (0.826 − 0.563i)22-s + (0.0747 + 0.997i)23-s + (0.955 + 0.294i)25-s + (0.826 − 0.563i)26-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.988 − 0.149i)5-s + (0.623 − 0.781i)8-s + (0.365 − 0.930i)10-s + (−0.733 − 0.680i)11-s + (−0.733 − 0.680i)13-s + (0.623 + 0.781i)16-s + (0.826 + 0.563i)17-s + (−0.5 + 0.866i)19-s + (0.826 + 0.563i)20-s + (0.826 − 0.563i)22-s + (0.0747 + 0.997i)23-s + (0.955 + 0.294i)25-s + (0.826 − 0.563i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.250 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.250 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4141391907 + 0.5347697966i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4141391907 + 0.5347697966i\) |
\(L(1)\) |
\(\approx\) |
\(0.6152389038 + 0.3080677211i\) |
\(L(1)\) |
\(\approx\) |
\(0.6152389038 + 0.3080677211i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.222 + 0.974i)T \) |
| 5 | \( 1 + (-0.988 - 0.149i)T \) |
| 11 | \( 1 + (-0.733 - 0.680i)T \) |
| 13 | \( 1 + (-0.733 - 0.680i)T \) |
| 17 | \( 1 + (0.826 + 0.563i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.0747 + 0.997i)T \) |
| 29 | \( 1 + (0.826 + 0.563i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.0747 - 0.997i)T \) |
| 41 | \( 1 + (0.365 + 0.930i)T \) |
| 43 | \( 1 + (0.365 - 0.930i)T \) |
| 47 | \( 1 + (-0.222 + 0.974i)T \) |
| 53 | \( 1 + (0.0747 + 0.997i)T \) |
| 59 | \( 1 + (0.623 + 0.781i)T \) |
| 61 | \( 1 + (-0.900 + 0.433i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.900 - 0.433i)T \) |
| 73 | \( 1 + (-0.733 + 0.680i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.733 + 0.680i)T \) |
| 89 | \( 1 + (0.955 + 0.294i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.45894331213773546846129722709, −22.95718375993152469880778091338, −22.04421486722564172861889040442, −21.04736246261139768430001070729, −20.38856875654967991116957405926, −19.39940934915288170464307540294, −18.9399182204121960336444252783, −17.98921974355351473062301056204, −17.045641374299531243892191079752, −16.05629661507873899368438379926, −15.00120168104857327769021182496, −14.10728879605569100230047343477, −12.96010267276111818955577888125, −12.13642688953587699693121415498, −11.54828341879290011489205015809, −10.47697531640474814004290129657, −9.74314785812930320191051078543, −8.57198665205045273358044689419, −7.76314445305826481700507408337, −6.80451615382582633017728318568, −4.88864356451844404096343402101, −4.42509533206697208980962236223, −3.07389753520746535278759950284, −2.26852708290320297829477949724, −0.546957046619162597229577705359,
0.99259855894190416178311265944, 3.0737665736557341200233428165, 4.15497202531513803591590615357, 5.23265683551928399755561075513, 6.06267324810311377284323709696, 7.44531077679490279904154842053, 7.929347183356142017968597678800, 8.73257418751333100293636910286, 10.01750667920704018255840441196, 10.78534615482459146285234655089, 12.17777454832494931713198086580, 12.90783849628213549279559016612, 14.06970621434136955881805303047, 14.92975588582778702561189408384, 15.66919236982597511558027219848, 16.39657960056838165584556400257, 17.22242820028621722182799308740, 18.21044323772873059902358188128, 19.18115622280331954364701821100, 19.586577724586649968449035688189, 20.95735994843889681712132841985, 21.9121048626936221124709064097, 23.07551806034818487801433686091, 23.42420620683457317567298695141, 24.30214385576468528072844785246