L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.826 − 0.563i)5-s + (0.900 + 0.433i)8-s + (−0.0747 + 0.997i)10-s + (0.988 + 0.149i)11-s + (0.988 + 0.149i)13-s + (−0.900 + 0.433i)16-s + (−0.733 − 0.680i)17-s + (0.5 + 0.866i)19-s + (−0.733 − 0.680i)20-s + (−0.733 + 0.680i)22-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.826 − 0.563i)5-s + (0.900 + 0.433i)8-s + (−0.0747 + 0.997i)10-s + (0.988 + 0.149i)11-s + (0.988 + 0.149i)13-s + (−0.900 + 0.433i)16-s + (−0.733 − 0.680i)17-s + (0.5 + 0.866i)19-s + (−0.733 − 0.680i)20-s + (−0.733 + 0.680i)22-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (−0.733 + 0.680i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.184690693 + 0.2002018180i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.184690693 + 0.2002018180i\) |
\(L(1)\) |
\(\approx\) |
\(0.9581280186 + 0.1811702982i\) |
\(L(1)\) |
\(\approx\) |
\(0.9581280186 + 0.1811702982i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.623 + 0.781i)T \) |
| 5 | \( 1 + (0.826 - 0.563i)T \) |
| 11 | \( 1 + (0.988 + 0.149i)T \) |
| 13 | \( 1 + (0.988 + 0.149i)T \) |
| 17 | \( 1 + (-0.733 - 0.680i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.955 - 0.294i)T \) |
| 29 | \( 1 + (0.733 + 0.680i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.955 - 0.294i)T \) |
| 41 | \( 1 + (0.0747 + 0.997i)T \) |
| 43 | \( 1 + (0.0747 - 0.997i)T \) |
| 47 | \( 1 + (0.623 - 0.781i)T \) |
| 53 | \( 1 + (-0.955 - 0.294i)T \) |
| 59 | \( 1 + (-0.900 + 0.433i)T \) |
| 61 | \( 1 + (0.222 - 0.974i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (0.988 - 0.149i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.988 + 0.149i)T \) |
| 89 | \( 1 + (0.365 - 0.930i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.105659453761505652904013058571, −22.787444431435158118209638335805, −21.99792355517781029583060264819, −21.56457178220403321383971977345, −20.46703059167463229297496631500, −19.72738634236275977505213154597, −18.84644070792921379480796807810, −17.885871340744666326724890837816, −17.51465006861350781271702156891, −16.45698817383928428510092953169, −15.39740096357456372934940594388, −14.05958683227866707213299069604, −13.4867428853466223615542043958, −12.4734480225644885062348815617, −11.28098898062376111060973637815, −10.82890052397981680961257054652, −9.66722735396660912614566392005, −9.07780482249313761973149812897, −8.01228214476676313252654489508, −6.77710558070179447246565010587, −5.958097565918597240588922910131, −4.320430743401116635612226065158, −3.34125615567759615552730703775, −2.22297468412340634347398407897, −1.21623232814208761595106020230,
1.077451289424739513236490555150, 2.028208983174518305674190404248, 3.960482142070331787616013903230, 5.084888113358242524854438846351, 6.076054994087077186287009521951, 6.72030117720786981595478573816, 8.01983928270391738365956645792, 8.94861792562027856216542727864, 9.51560446093543050839074255323, 10.50450853588852800707488338405, 11.61063190695128421762732770336, 12.85757452125500404101352389315, 13.964985728863461006903182269384, 14.32860104402620969220959513229, 15.70819615454502224339832930933, 16.39379101435418096857915420237, 17.09314665949835313577282773392, 18.1044541806381248559570606817, 18.48396736169574569302129896668, 20.010301550146678007671739148617, 20.28362368135997558045028089568, 21.64783919650259758443786122449, 22.49287985718909121788123542476, 23.47503246849409929173297971314, 24.34599687028608164981909248462