L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.0747 + 0.997i)5-s + (0.900 + 0.433i)8-s + (−0.826 − 0.563i)10-s + (−0.365 − 0.930i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.955 − 0.294i)17-s + (0.5 − 0.866i)19-s + (0.955 − 0.294i)20-s + (0.955 + 0.294i)22-s + (0.733 − 0.680i)23-s + (−0.988 + 0.149i)25-s + (0.955 + 0.294i)26-s + ⋯ |
L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.0747 + 0.997i)5-s + (0.900 + 0.433i)8-s + (−0.826 − 0.563i)10-s + (−0.365 − 0.930i)11-s + (−0.365 − 0.930i)13-s + (−0.900 + 0.433i)16-s + (0.955 − 0.294i)17-s + (0.5 − 0.866i)19-s + (0.955 − 0.294i)20-s + (0.955 + 0.294i)22-s + (0.733 − 0.680i)23-s + (−0.988 + 0.149i)25-s + (0.955 + 0.294i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0142i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8354211956 + 0.005951468229i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8354211956 + 0.005951468229i\) |
\(L(1)\) |
\(\approx\) |
\(0.7456351916 + 0.1726085396i\) |
\(L(1)\) |
\(\approx\) |
\(0.7456351916 + 0.1726085396i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.623 + 0.781i)T \) |
| 5 | \( 1 + (0.0747 + 0.997i)T \) |
| 11 | \( 1 + (-0.365 - 0.930i)T \) |
| 13 | \( 1 + (-0.365 - 0.930i)T \) |
| 17 | \( 1 + (0.955 - 0.294i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.733 - 0.680i)T \) |
| 29 | \( 1 + (-0.955 + 0.294i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (-0.733 - 0.680i)T \) |
| 41 | \( 1 + (0.826 - 0.563i)T \) |
| 43 | \( 1 + (0.826 + 0.563i)T \) |
| 47 | \( 1 + (0.623 - 0.781i)T \) |
| 53 | \( 1 + (0.733 - 0.680i)T \) |
| 59 | \( 1 + (-0.900 + 0.433i)T \) |
| 61 | \( 1 + (0.222 - 0.974i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (-0.365 + 0.930i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.365 - 0.930i)T \) |
| 89 | \( 1 + (-0.988 + 0.149i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.06274297246464651741611047320, −23.15170599794437636201828976064, −22.15003646406904768649814994653, −21.010537187143434820359200348617, −20.80416503683029096772345866238, −19.785602006682256099584412567865, −18.9909192614246663679310876745, −18.12170197255497000737012277647, −17.03758022483934208932160653058, −16.68742188813594913584481821430, −15.591030090160716827385890386756, −14.27379308168680029645277639397, −13.203788423096498892051440666, −12.391088725124507902210336594717, −11.85835154503879531598650912796, −10.651804491254961381559542947205, −9.57530272006005139514323784357, −9.196361290737281779537975664193, −7.91218039143794465141226984054, −7.293321530280584423732811814641, −5.57423054482012498020551921387, −4.53677602721146803281574261630, −3.57589134428681753944571594415, −2.097809174415984498393873691518, −1.26113580945228031370945678044,
0.6559649600721682271464731129, 2.416873609169058271214472308, 3.50088583298407011829096724661, 5.23977333136919136879815428138, 5.82969633136397142861729557982, 7.09195692232497536263007079378, 7.59942588063317053224691455925, 8.74258957462740703763073848531, 9.72871656429521363029963464191, 10.681751902972284981011822376213, 11.2071997502636769319553039372, 12.801074460471389068769097251563, 13.9022783169875324126815485114, 14.5770015175808100172213259517, 15.4025856606119415793139974012, 16.23228830355047441270789055502, 17.18186987834487067223498149985, 18.078838663296182220510492829183, 18.69665771164193717220188405514, 19.42426802402079212890592712230, 20.459172659248761840610378690202, 21.68404646449272440913217635994, 22.58351715776532817734357546189, 23.21045419223856084132976143873, 24.26992965830982010872229489543