L(s) = 1 | + (−0.365 + 0.930i)2-s + (−0.733 − 0.680i)4-s + (0.0747 − 0.997i)5-s + (0.900 − 0.433i)8-s + (0.900 + 0.433i)10-s + (−0.365 + 0.930i)11-s + (0.988 − 0.149i)13-s + (0.0747 + 0.997i)16-s + (−0.222 − 0.974i)17-s − 19-s + (−0.733 + 0.680i)20-s + (−0.733 − 0.680i)22-s + (0.733 + 0.680i)23-s + (−0.988 − 0.149i)25-s + (−0.222 + 0.974i)26-s + ⋯ |
L(s) = 1 | + (−0.365 + 0.930i)2-s + (−0.733 − 0.680i)4-s + (0.0747 − 0.997i)5-s + (0.900 − 0.433i)8-s + (0.900 + 0.433i)10-s + (−0.365 + 0.930i)11-s + (0.988 − 0.149i)13-s + (0.0747 + 0.997i)16-s + (−0.222 − 0.974i)17-s − 19-s + (−0.733 + 0.680i)20-s + (−0.733 − 0.680i)22-s + (0.733 + 0.680i)23-s + (−0.988 − 0.149i)25-s + (−0.222 + 0.974i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9278650385 - 0.1568006473i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9278650385 - 0.1568006473i\) |
\(L(1)\) |
\(\approx\) |
\(0.8370002046 + 0.09919975920i\) |
\(L(1)\) |
\(\approx\) |
\(0.8370002046 + 0.09919975920i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.365 + 0.930i)T \) |
| 5 | \( 1 + (0.0747 - 0.997i)T \) |
| 11 | \( 1 + (-0.365 + 0.930i)T \) |
| 13 | \( 1 + (0.988 - 0.149i)T \) |
| 17 | \( 1 + (-0.222 - 0.974i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.733 + 0.680i)T \) |
| 29 | \( 1 + (0.733 - 0.680i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.222 - 0.974i)T \) |
| 41 | \( 1 + (0.0747 - 0.997i)T \) |
| 43 | \( 1 + (0.0747 + 0.997i)T \) |
| 47 | \( 1 + (0.365 - 0.930i)T \) |
| 53 | \( 1 + (0.222 - 0.974i)T \) |
| 59 | \( 1 + (0.826 - 0.563i)T \) |
| 61 | \( 1 + (0.733 - 0.680i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.222 - 0.974i)T \) |
| 73 | \( 1 + (-0.623 + 0.781i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.988 - 0.149i)T \) |
| 89 | \( 1 + (0.623 - 0.781i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.77203879844365058711860646158, −23.14228893948273583053489131355, −22.13045844019936140182906239525, −21.468305918787816964919650420216, −20.83874889482827464268114641081, −19.57319677911819699814025117298, −18.965863333711237955977989302421, −18.33409274689386971561249092670, −17.44661568654582103521963296788, −16.5004335810797305253356751044, −15.361381416091199327440749576220, −14.25774574160321638468362948085, −13.48703759130407245437077266159, −12.61699603570859685603496232289, −11.4272925611479835183479350912, −10.70221198705578565960570009453, −10.28381115258722280120948843232, −8.75716894517234497294158349723, −8.30990289691671592187134903876, −6.89862026982805827743890285719, −5.94121227016177442517798906118, −4.42234677999316232178420747756, −3.37460624751299936793585538965, −2.60767646062097181889935991014, −1.28124289699162297780870383510,
0.69087000721423723737423599198, 2.04874664996025019274967039562, 4.02424685409506355013373458791, 4.87797464148859236527855830797, 5.745159384969690346506782093493, 6.838507822418131671381813052361, 7.84774332901957858960226755850, 8.69645427408161127263863804723, 9.45810688944293215164774622682, 10.38365976276807704408866565225, 11.65000371371048894787173167702, 12.97831382929760204123604220527, 13.38853712258524400300169154209, 14.5797784704132157706937006946, 15.65464812089106073619128191111, 16.01475117559387342835571596090, 17.21639576752342766093638751823, 17.64505743151604467048698020250, 18.68853193501032440890981844766, 19.61530821888004218321885645018, 20.589979189290647786347284238614, 21.30445688363538540766209068768, 22.78660997654412529144109848232, 23.24094660302263284960975637430, 24.092370433511277539939371839259