| L(s) = 1 | + (−0.955 − 0.294i)2-s + (0.826 + 0.563i)4-s + (0.365 − 0.930i)5-s + (−0.623 − 0.781i)8-s + (−0.623 + 0.781i)10-s + (−0.955 − 0.294i)11-s + (0.733 − 0.680i)13-s + (0.365 + 0.930i)16-s + (−0.900 − 0.433i)17-s − 19-s + (0.826 − 0.563i)20-s + (0.826 + 0.563i)22-s + (−0.826 − 0.563i)23-s + (−0.733 − 0.680i)25-s + (−0.900 + 0.433i)26-s + ⋯ |
| L(s) = 1 | + (−0.955 − 0.294i)2-s + (0.826 + 0.563i)4-s + (0.365 − 0.930i)5-s + (−0.623 − 0.781i)8-s + (−0.623 + 0.781i)10-s + (−0.955 − 0.294i)11-s + (0.733 − 0.680i)13-s + (0.365 + 0.930i)16-s + (−0.900 − 0.433i)17-s − 19-s + (0.826 − 0.563i)20-s + (0.826 + 0.563i)22-s + (−0.826 − 0.563i)23-s + (−0.733 − 0.680i)25-s + (−0.900 + 0.433i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.963 - 0.267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.963 - 0.267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.06185276797 - 0.4541828610i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.06185276797 - 0.4541828610i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5361886327 - 0.2599175520i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5361886327 - 0.2599175520i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.955 - 0.294i)T \) |
| 5 | \( 1 + (0.365 - 0.930i)T \) |
| 11 | \( 1 + (-0.955 - 0.294i)T \) |
| 13 | \( 1 + (0.733 - 0.680i)T \) |
| 17 | \( 1 + (-0.900 - 0.433i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.826 - 0.563i)T \) |
| 29 | \( 1 + (-0.826 + 0.563i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.900 - 0.433i)T \) |
| 41 | \( 1 + (0.365 - 0.930i)T \) |
| 43 | \( 1 + (0.365 + 0.930i)T \) |
| 47 | \( 1 + (0.955 + 0.294i)T \) |
| 53 | \( 1 + (0.900 - 0.433i)T \) |
| 59 | \( 1 + (-0.988 - 0.149i)T \) |
| 61 | \( 1 + (-0.826 + 0.563i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.900 - 0.433i)T \) |
| 73 | \( 1 + (0.222 - 0.974i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.733 - 0.680i)T \) |
| 89 | \( 1 + (-0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.54147466752859835383569367391, −23.70639013077397147472034657726, −22.94194242515755045648820309129, −21.70549754563285163547702882998, −20.97975013576104532576451161341, −20.00309214265848343423626059824, −18.90943162843262121973448500785, −18.514116668190980243720010022760, −17.5926009498400037041389183909, −16.89934012391544442374865534569, −15.57018293439102987847157704146, −15.27942973008168768514013461434, −14.08244743493175736000163220586, −13.20361922918508228349009481681, −11.72929575492736139794632731546, −10.86685869748947507649974034332, −10.26429537619128292257986215713, −9.28074609061547269913034637385, −8.268580171093758015854473227660, −7.33036780608889825381306009083, −6.41058378798483783697551784191, −5.70576729780786296914884622113, −4.06276983224058405990245711916, −2.538662048097855709846954046992, −1.82263669352661209063964737251,
0.328335827955689598021947002118, 1.71300692968381275766306070880, 2.74480481538825197320211488464, 4.12693209747427216415608393161, 5.45595669116741515314446775071, 6.43341174818748614634794422032, 7.73930785544094425741524527428, 8.558195623868346843741697621497, 9.152713409884970321492493969704, 10.41864910693900991326299327585, 10.88975997366195693212185248236, 12.25037985017965644199722676049, 12.88231276891517877578045291168, 13.7882201651570994273225097739, 15.41644430552376020080713268117, 15.99546125588748247070451288714, 16.81535548738131450771560302594, 17.79591980369891142195698427418, 18.28454303577499298387431400578, 19.42988800612014042634186231766, 20.26065719820009101400632638728, 20.90687742450020779865861993913, 21.54991962540620777313807670531, 22.77855212610721794399098881155, 24.04171089490232832326521733469