Properties

Label 1-21-21.11-r1-0-0
Degree $1$
Conductor $21$
Sign $-0.0633 - 0.997i$
Analytic cond. $2.25676$
Root an. cond. $2.25676$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s − 8-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s − 20-s + 22-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s + ⋯
L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s − 8-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s − 20-s + 22-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(21\)    =    \(3 \cdot 7\)
Sign: $-0.0633 - 0.997i$
Analytic conductor: \(2.25676\)
Root analytic conductor: \(2.25676\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{21} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 21,\ (1:\ ),\ -0.0633 - 0.997i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.119373288 - 1.192660627i\)
\(L(\frac12)\) \(\approx\) \(1.119373288 - 1.192660627i\)
\(L(1)\) \(\approx\) \(1.141608742 - 0.7593774607i\)
\(L(1)\) \(\approx\) \(1.141608742 - 0.7593774607i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + (0.5 - 0.866i)T \)
5 \( 1 + (0.5 - 0.866i)T \)
11 \( 1 + (0.5 + 0.866i)T \)
13 \( 1 + T \)
17 \( 1 + (0.5 + 0.866i)T \)
19 \( 1 + (-0.5 + 0.866i)T \)
23 \( 1 + (0.5 - 0.866i)T \)
29 \( 1 - T \)
31 \( 1 + (-0.5 - 0.866i)T \)
37 \( 1 + (-0.5 + 0.866i)T \)
41 \( 1 - T \)
43 \( 1 + T \)
47 \( 1 + (0.5 - 0.866i)T \)
53 \( 1 + (0.5 + 0.866i)T \)
59 \( 1 + (0.5 + 0.866i)T \)
61 \( 1 + (-0.5 + 0.866i)T \)
67 \( 1 + (-0.5 - 0.866i)T \)
71 \( 1 - T \)
73 \( 1 + (-0.5 - 0.866i)T \)
79 \( 1 + (-0.5 + 0.866i)T \)
83 \( 1 - T \)
89 \( 1 + (0.5 - 0.866i)T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−40.23685401838672866861432820238, −38.567990239189238876830991233428, −37.14319148227260714163461378756, −35.5280025520395201455620714587, −34.36460321311181453481080963285, −33.31808790813385758521621654512, −32.140109237214601411081419729094, −30.6363221120543385600721457223, −29.59888903169292550313337820430, −27.40042617941045636858938267248, −26.09555313814283836834102187054, −25.09182551808548267340125569260, −23.54291842636638356773863602664, −22.29173374741619256524879198176, −21.17602198380544411305641449277, −18.78076149692662465730077844967, −17.45313784141581656464295650630, −15.92053869855272052388183740450, −14.41833423973691722484914262443, −13.35979207058571223825215003508, −11.25009364810249046204992106384, −9.02729596205879432665264889066, −7.08050476257602177700061314530, −5.70086521677533954748123778311, −3.38123798130451827202973386396, 1.61201939105444709858788997003, 4.13202204632408647064707313865, 5.8751261712862967192297656850, 8.84449363843428597306641234141, 10.329513358619587930526372948162, 12.17774973539419563968302301124, 13.28402633710605058592580067155, 14.87263645319252306374596971776, 16.95697615757441970894706927005, 18.6285197154408709494386107626, 20.26899064118222038336848795427, 21.12402284421267552356689866092, 22.666672209770741748167873251, 24.00718281745723516950085479751, 25.5147724933501927559619647108, 27.69053131480802296539058343815, 28.5029282750993406787087103555, 29.863580418798960306799522844544, 31.10642269186750944554083916492, 32.484204295731009453098836670545, 33.32383167552013224190719473763, 35.613497094931050093311998530581, 36.697864474498195969919747577484, 37.93560052427407836388259041719, 39.189747011792309352002046788789

Graph of the $Z$-function along the critical line