L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s − 8-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s − 20-s + 22-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 − 0.866i)5-s − 8-s + (−0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)19-s − 20-s + 22-s + (0.5 − 0.866i)23-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.119373288 - 1.192660627i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.119373288 - 1.192660627i\) |
\(L(1)\) |
\(\approx\) |
\(1.141608742 - 0.7593774607i\) |
\(L(1)\) |
\(\approx\) |
\(1.141608742 - 0.7593774607i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−40.23685401838672866861432820238, −38.567990239189238876830991233428, −37.14319148227260714163461378756, −35.5280025520395201455620714587, −34.36460321311181453481080963285, −33.31808790813385758521621654512, −32.140109237214601411081419729094, −30.6363221120543385600721457223, −29.59888903169292550313337820430, −27.40042617941045636858938267248, −26.09555313814283836834102187054, −25.09182551808548267340125569260, −23.54291842636638356773863602664, −22.29173374741619256524879198176, −21.17602198380544411305641449277, −18.78076149692662465730077844967, −17.45313784141581656464295650630, −15.92053869855272052388183740450, −14.41833423973691722484914262443, −13.35979207058571223825215003508, −11.25009364810249046204992106384, −9.02729596205879432665264889066, −7.08050476257602177700061314530, −5.70086521677533954748123778311, −3.38123798130451827202973386396,
1.61201939105444709858788997003, 4.13202204632408647064707313865, 5.8751261712862967192297656850, 8.84449363843428597306641234141, 10.329513358619587930526372948162, 12.17774973539419563968302301124, 13.28402633710605058592580067155, 14.87263645319252306374596971776, 16.95697615757441970894706927005, 18.6285197154408709494386107626, 20.26899064118222038336848795427, 21.12402284421267552356689866092, 22.666672209770741748167873251, 24.00718281745723516950085479751, 25.5147724933501927559619647108, 27.69053131480802296539058343815, 28.5029282750993406787087103555, 29.863580418798960306799522844544, 31.10642269186750944554083916492, 32.484204295731009453098836670545, 33.32383167552013224190719473763, 35.613497094931050093311998530581, 36.697864474498195969919747577484, 37.93560052427407836388259041719, 39.189747011792309352002046788789