| L(s) = 1 | + (−0.723 − 0.690i)2-s + (0.0475 + 0.998i)4-s + (−0.928 − 0.371i)5-s + (−0.995 + 0.0950i)7-s + (0.654 − 0.755i)8-s + (0.415 + 0.909i)10-s + (−0.235 − 0.971i)11-s + (−0.995 − 0.0950i)13-s + (0.786 + 0.618i)14-s + (−0.995 + 0.0950i)16-s + (−0.841 − 0.540i)17-s + (0.841 − 0.540i)19-s + (0.327 − 0.945i)20-s + (−0.5 + 0.866i)22-s + (0.723 + 0.690i)25-s + (0.654 + 0.755i)26-s + ⋯ |
| L(s) = 1 | + (−0.723 − 0.690i)2-s + (0.0475 + 0.998i)4-s + (−0.928 − 0.371i)5-s + (−0.995 + 0.0950i)7-s + (0.654 − 0.755i)8-s + (0.415 + 0.909i)10-s + (−0.235 − 0.971i)11-s + (−0.995 − 0.0950i)13-s + (0.786 + 0.618i)14-s + (−0.995 + 0.0950i)16-s + (−0.841 − 0.540i)17-s + (0.841 − 0.540i)19-s + (0.327 − 0.945i)20-s + (−0.5 + 0.866i)22-s + (0.723 + 0.690i)25-s + (0.654 + 0.755i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.935 + 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.935 + 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3578240391 + 0.06509262351i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3578240391 + 0.06509262351i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4502666978 - 0.1621178959i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4502666978 - 0.1621178959i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (-0.723 - 0.690i)T \) |
| 5 | \( 1 + (-0.928 - 0.371i)T \) |
| 7 | \( 1 + (-0.995 + 0.0950i)T \) |
| 11 | \( 1 + (-0.235 - 0.971i)T \) |
| 13 | \( 1 + (-0.995 - 0.0950i)T \) |
| 17 | \( 1 + (-0.841 - 0.540i)T \) |
| 19 | \( 1 + (0.841 - 0.540i)T \) |
| 29 | \( 1 + (-0.0475 + 0.998i)T \) |
| 31 | \( 1 + (-0.327 - 0.945i)T \) |
| 37 | \( 1 + (-0.142 + 0.989i)T \) |
| 41 | \( 1 + (-0.928 - 0.371i)T \) |
| 43 | \( 1 + (-0.327 + 0.945i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.415 + 0.909i)T \) |
| 59 | \( 1 + (0.995 + 0.0950i)T \) |
| 61 | \( 1 + (0.981 + 0.189i)T \) |
| 67 | \( 1 + (0.235 - 0.971i)T \) |
| 71 | \( 1 + (0.959 - 0.281i)T \) |
| 73 | \( 1 + (0.841 - 0.540i)T \) |
| 79 | \( 1 + (0.580 - 0.814i)T \) |
| 83 | \( 1 + (-0.928 + 0.371i)T \) |
| 89 | \( 1 + (0.654 + 0.755i)T \) |
| 97 | \( 1 + (-0.786 + 0.618i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.651628734471224609590928234736, −25.657988275058160667550896247631, −24.741687350319751015060070482199, −23.68534049404425528439083059178, −22.90684233342091838048184694069, −22.16884778603422614565495158601, −20.2632208113838836879248388229, −19.66756138698201477101919527491, −18.88142438499773123577763170112, −17.86014681580771547977761951644, −16.83972697147466742937811408284, −15.82212436752363287048862193771, −15.23805954948780847448501905987, −14.22981577760451227404941917184, −12.79199864677202505550890191251, −11.68975622593573038202928247935, −10.36006724358196531996828581312, −9.68447987563231837126630010301, −8.408030583028890555555026370632, −7.26096657320853395940944569601, −6.75659626744310866394206333555, −5.23931789317168769657062482642, −3.896092749906599690561476951600, −2.25912241268507505251056937614, −0.24935551342412438739888039740,
0.71189851887497253144600070075, 2.693300506665728327567645694270, 3.55197669179213775546922625660, 4.93617872336680385527272029611, 6.77899046525937679215606725850, 7.74796927151584429421037677365, 8.86341968704299412402475801359, 9.65425254055098474298128916488, 10.941293422125955155453011205664, 11.78555564073177963459057960235, 12.70593937278005955311047156801, 13.60306076056984558100461952123, 15.41379251541612317324220049418, 16.202466902476378137320829193150, 16.933304939784128792094486385090, 18.28194869989912764054231957835, 19.13824218422759450102566726886, 19.83904156641043769956240932396, 20.53203361220426300955241755644, 22.01591838871216312985521984400, 22.40052911059463161442655704939, 23.88629853468637178839344086373, 24.75676575693412430961683415895, 25.984305010161482610765354211448, 26.814517675070984611513098186144