Properties

Label 1-195-195.194-r1-0-0
Degree $1$
Conductor $195$
Sign $1$
Analytic cond. $20.9556$
Root an. cond. $20.9556$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 11-s − 14-s + 16-s + 17-s − 19-s − 22-s + 23-s + 28-s − 29-s − 31-s − 32-s − 34-s + 37-s + 38-s + 41-s − 43-s + 44-s − 46-s − 47-s + 49-s + 53-s − 56-s + 58-s + ⋯
L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 11-s − 14-s + 16-s + 17-s − 19-s − 22-s + 23-s + 28-s − 29-s − 31-s − 32-s − 34-s + 37-s + 38-s + 41-s − 43-s + 44-s − 46-s − 47-s + 49-s + 53-s − 56-s + 58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(20.9556\)
Root analytic conductor: \(20.9556\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{195} (194, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 195,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.447248236\)
\(L(\frac12)\) \(\approx\) \(1.447248236\)
\(L(1)\) \(\approx\) \(0.8998964909\)
\(L(1)\) \(\approx\) \(0.8998964909\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good2 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 + T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 - T \)
37 \( 1 + T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
59 \( 1 + T \)
61 \( 1 + T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 + T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 + T \)
97 \( 1 + T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.05804054254587441811611087090, −25.813020865483933427420755921324, −25.02973657432677463827443108795, −24.20749242549201843740509963031, −23.1838947791430319130370827474, −21.66470041040740636250407992136, −20.93119317851929787493244016784, −19.94639552977000728799853054038, −18.999859233412595536601066345313, −18.11432778231971052887963989480, −17.08580806852820881020623566344, −16.5456781111182323124203970040, −14.973092766118638530246332348920, −14.538848271452150676678298968522, −12.77719430144747225012896796258, −11.59185417688313152061044940430, −10.938158254065847143410105978751, −9.67389896739758428466134234082, −8.70801850268493958294692686673, −7.7514641294761048287883396593, −6.68473852171955440679235617240, −5.38709887279166918439290362722, −3.754981130364287010276866900539, −2.11047334670063318489282953274, −0.980506283014651926272391264938, 0.980506283014651926272391264938, 2.11047334670063318489282953274, 3.754981130364287010276866900539, 5.38709887279166918439290362722, 6.68473852171955440679235617240, 7.7514641294761048287883396593, 8.70801850268493958294692686673, 9.67389896739758428466134234082, 10.938158254065847143410105978751, 11.59185417688313152061044940430, 12.77719430144747225012896796258, 14.538848271452150676678298968522, 14.973092766118638530246332348920, 16.5456781111182323124203970040, 17.08580806852820881020623566344, 18.11432778231971052887963989480, 18.999859233412595536601066345313, 19.94639552977000728799853054038, 20.93119317851929787493244016784, 21.66470041040740636250407992136, 23.1838947791430319130370827474, 24.20749242549201843740509963031, 25.02973657432677463827443108795, 25.813020865483933427420755921324, 27.05804054254587441811611087090

Graph of the $Z$-function along the critical line