Properties

Label 1-1925-1925.1083-r0-0-0
Degree 11
Conductor 19251925
Sign 0.993+0.109i-0.993 + 0.109i
Analytic cond. 8.939668.93966
Root an. cond. 8.939668.93966
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.207 + 0.978i)2-s + (0.866 + 0.5i)3-s + (−0.913 + 0.406i)4-s + (−0.309 + 0.951i)6-s + (−0.587 − 0.809i)8-s + (0.5 + 0.866i)9-s + (−0.994 − 0.104i)12-s i·13-s + (0.669 − 0.743i)16-s + (−0.743 + 0.669i)17-s + (−0.743 + 0.669i)18-s + (0.913 + 0.406i)19-s + (−0.406 + 0.913i)23-s + (−0.104 − 0.994i)24-s + (0.978 − 0.207i)26-s + i·27-s + ⋯
L(s)  = 1  + (0.207 + 0.978i)2-s + (0.866 + 0.5i)3-s + (−0.913 + 0.406i)4-s + (−0.309 + 0.951i)6-s + (−0.587 − 0.809i)8-s + (0.5 + 0.866i)9-s + (−0.994 − 0.104i)12-s i·13-s + (0.669 − 0.743i)16-s + (−0.743 + 0.669i)17-s + (−0.743 + 0.669i)18-s + (0.913 + 0.406i)19-s + (−0.406 + 0.913i)23-s + (−0.104 − 0.994i)24-s + (0.978 − 0.207i)26-s + i·27-s + ⋯

Functional equation

Λ(s)=(1925s/2ΓR(s)L(s)=((0.993+0.109i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.109i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(1925s/2ΓR(s)L(s)=((0.993+0.109i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 + 0.109i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 19251925    =    527115^{2} \cdot 7 \cdot 11
Sign: 0.993+0.109i-0.993 + 0.109i
Analytic conductor: 8.939668.93966
Root analytic conductor: 8.939668.93966
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ1925(1083,)\chi_{1925} (1083, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 1925, (0: ), 0.993+0.109i)(1,\ 1925,\ (0:\ ),\ -0.993 + 0.109i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.1037520597+1.890039431i0.1037520597 + 1.890039431i
L(12)L(\frac12) \approx 0.1037520597+1.890039431i0.1037520597 + 1.890039431i
L(1)L(1) \approx 0.9280558161+0.9814432559i0.9280558161 + 0.9814432559i
L(1)L(1) \approx 0.9280558161+0.9814432559i0.9280558161 + 0.9814432559i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
7 1 1
11 1 1
good2 1+(0.207+0.978i)T 1 + (0.207 + 0.978i)T
3 1+(0.866+0.5i)T 1 + (0.866 + 0.5i)T
13 1iT 1 - iT
17 1+(0.743+0.669i)T 1 + (-0.743 + 0.669i)T
19 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
23 1+(0.406+0.913i)T 1 + (-0.406 + 0.913i)T
29 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
31 1+(0.913+0.406i)T 1 + (-0.913 + 0.406i)T
37 1+(0.4060.913i)T 1 + (0.406 - 0.913i)T
41 1+(0.309+0.951i)T 1 + (-0.309 + 0.951i)T
43 1+iT 1 + iT
47 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
53 1+(0.2070.978i)T 1 + (0.207 - 0.978i)T
59 1+(0.1040.994i)T 1 + (-0.104 - 0.994i)T
61 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
67 1+(0.207+0.978i)T 1 + (-0.207 + 0.978i)T
71 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
73 1+(0.207+0.978i)T 1 + (-0.207 + 0.978i)T
79 1+(0.669+0.743i)T 1 + (-0.669 + 0.743i)T
83 1+(0.9510.309i)T 1 + (-0.951 - 0.309i)T
89 1+(0.913+0.406i)T 1 + (0.913 + 0.406i)T
97 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−19.81117088594578071286660867278, −19.007591172507007541453027752401, −18.48064023458066101021066435216, −17.90538138465367706995371886992, −16.95170718719834941864364842343, −15.81725856193477409604582633881, −15.08125331498284240799713432667, −14.106159319659876080600227697149, −13.81564088314190298774845466468, −13.13801225037335537663548152492, −12.137165322567058088661327592994, −11.79192647056365249435568231139, −10.78781267295350818231243030367, −9.88901474982765394237202177170, −9.11940720458665680133757531680, −8.73699908752930677789194570600, −7.66445091866527892283490465034, −6.8338708868277549550322368353, −5.906122252497717411106615270663, −4.66917332561579919176474758260, −4.11571273928624678281108362967, −3.09455403444286389685497245104, −2.40310778676768066411627765130, −1.67363397858922194616241185704, −0.55772155800217477509235544260, 1.32096179853214973888828453245, 2.69084543166953081312875687261, 3.51481609280689224858907689737, 4.15653379816293862993172246724, 5.16472595892635755888780699553, 5.73737588459429945264485516999, 6.8879452884915813763995534785, 7.642526975599482598600494631391, 8.27312238458212133153262573641, 8.9398337414318834914257589418, 9.77781512122366458906936742030, 10.37915253337800359763553848200, 11.49615264011998052843797487018, 12.74057773850252096180368859220, 13.12766082786597023537692007383, 14.01168095850245554333789250979, 14.610970545230049343979136877164, 15.2336861156393061746823287319, 15.99020362457629866442922541736, 16.34084928148432715563778899681, 17.542613323160265028125398284867, 17.9674036685606677597996334900, 18.875729257193755223377895053097, 19.843235937617636994991380714215, 20.22487423621575382465540830306

Graph of the ZZ-function along the critical line