L(s) = 1 | + (0.207 + 0.978i)2-s + (0.866 + 0.5i)3-s + (−0.913 + 0.406i)4-s + (−0.309 + 0.951i)6-s + (−0.587 − 0.809i)8-s + (0.5 + 0.866i)9-s + (−0.994 − 0.104i)12-s − i·13-s + (0.669 − 0.743i)16-s + (−0.743 + 0.669i)17-s + (−0.743 + 0.669i)18-s + (0.913 + 0.406i)19-s + (−0.406 + 0.913i)23-s + (−0.104 − 0.994i)24-s + (0.978 − 0.207i)26-s + i·27-s + ⋯ |
L(s) = 1 | + (0.207 + 0.978i)2-s + (0.866 + 0.5i)3-s + (−0.913 + 0.406i)4-s + (−0.309 + 0.951i)6-s + (−0.587 − 0.809i)8-s + (0.5 + 0.866i)9-s + (−0.994 − 0.104i)12-s − i·13-s + (0.669 − 0.743i)16-s + (−0.743 + 0.669i)17-s + (−0.743 + 0.669i)18-s + (0.913 + 0.406i)19-s + (−0.406 + 0.913i)23-s + (−0.104 − 0.994i)24-s + (0.978 − 0.207i)26-s + i·27-s + ⋯ |
Λ(s)=(=(1925s/2ΓR(s)L(s)(−0.993+0.109i)Λ(1−s)
Λ(s)=(=(1925s/2ΓR(s)L(s)(−0.993+0.109i)Λ(1−s)
Degree: |
1 |
Conductor: |
1925
= 52⋅7⋅11
|
Sign: |
−0.993+0.109i
|
Analytic conductor: |
8.93966 |
Root analytic conductor: |
8.93966 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1925(1083,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(1, 1925, (0: ), −0.993+0.109i)
|
Particular Values
L(21) |
≈ |
0.1037520597+1.890039431i |
L(21) |
≈ |
0.1037520597+1.890039431i |
L(1) |
≈ |
0.9280558161+0.9814432559i |
L(1) |
≈ |
0.9280558161+0.9814432559i |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1 |
| 11 | 1 |
good | 2 | 1+(0.207+0.978i)T |
| 3 | 1+(0.866+0.5i)T |
| 13 | 1−iT |
| 17 | 1+(−0.743+0.669i)T |
| 19 | 1+(0.913+0.406i)T |
| 23 | 1+(−0.406+0.913i)T |
| 29 | 1+(0.809+0.587i)T |
| 31 | 1+(−0.913+0.406i)T |
| 37 | 1+(0.406−0.913i)T |
| 41 | 1+(−0.309+0.951i)T |
| 43 | 1+iT |
| 47 | 1+(0.866−0.5i)T |
| 53 | 1+(0.207−0.978i)T |
| 59 | 1+(−0.104−0.994i)T |
| 61 | 1+(0.5+0.866i)T |
| 67 | 1+(−0.207+0.978i)T |
| 71 | 1+(−0.809+0.587i)T |
| 73 | 1+(−0.207+0.978i)T |
| 79 | 1+(−0.669+0.743i)T |
| 83 | 1+(−0.951−0.309i)T |
| 89 | 1+(0.913+0.406i)T |
| 97 | 1+(−0.951+0.309i)T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−19.81117088594578071286660867278, −19.007591172507007541453027752401, −18.48064023458066101021066435216, −17.90538138465367706995371886992, −16.95170718719834941864364842343, −15.81725856193477409604582633881, −15.08125331498284240799713432667, −14.106159319659876080600227697149, −13.81564088314190298774845466468, −13.13801225037335537663548152492, −12.137165322567058088661327592994, −11.79192647056365249435568231139, −10.78781267295350818231243030367, −9.88901474982765394237202177170, −9.11940720458665680133757531680, −8.73699908752930677789194570600, −7.66445091866527892283490465034, −6.8338708868277549550322368353, −5.906122252497717411106615270663, −4.66917332561579919176474758260, −4.11571273928624678281108362967, −3.09455403444286389685497245104, −2.40310778676768066411627765130, −1.67363397858922194616241185704, −0.55772155800217477509235544260,
1.32096179853214973888828453245, 2.69084543166953081312875687261, 3.51481609280689224858907689737, 4.15653379816293862993172246724, 5.16472595892635755888780699553, 5.73737588459429945264485516999, 6.8879452884915813763995534785, 7.642526975599482598600494631391, 8.27312238458212133153262573641, 8.9398337414318834914257589418, 9.77781512122366458906936742030, 10.37915253337800359763553848200, 11.49615264011998052843797487018, 12.74057773850252096180368859220, 13.12766082786597023537692007383, 14.01168095850245554333789250979, 14.610970545230049343979136877164, 15.2336861156393061746823287319, 15.99020362457629866442922541736, 16.34084928148432715563778899681, 17.542613323160265028125398284867, 17.9674036685606677597996334900, 18.875729257193755223377895053097, 19.843235937617636994991380714215, 20.22487423621575382465540830306