| L(s) = 1 | + (−0.0581 + 0.998i)5-s + (−0.973 + 0.230i)7-s + (0.835 − 0.549i)11-s + (−0.993 + 0.116i)13-s + (0.766 + 0.642i)17-s + (−0.766 + 0.642i)19-s + (−0.973 − 0.230i)23-s + (−0.993 − 0.116i)25-s + (0.597 − 0.802i)29-s + (0.286 + 0.957i)31-s + (−0.173 − 0.984i)35-s + (0.173 − 0.984i)37-s + (0.396 − 0.918i)41-s + (−0.893 − 0.448i)43-s + (0.286 − 0.957i)47-s + ⋯ |
| L(s) = 1 | + (−0.0581 + 0.998i)5-s + (−0.973 + 0.230i)7-s + (0.835 − 0.549i)11-s + (−0.993 + 0.116i)13-s + (0.766 + 0.642i)17-s + (−0.766 + 0.642i)19-s + (−0.973 − 0.230i)23-s + (−0.993 − 0.116i)25-s + (0.597 − 0.802i)29-s + (0.286 + 0.957i)31-s + (−0.173 − 0.984i)35-s + (0.173 − 0.984i)37-s + (0.396 − 0.918i)41-s + (−0.893 − 0.448i)43-s + (0.286 − 0.957i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2138532852 - 0.3118057197i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2138532852 - 0.3118057197i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7839295515 + 0.1045809424i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7839295515 + 0.1045809424i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.0581 + 0.998i)T \) |
| 7 | \( 1 + (-0.973 + 0.230i)T \) |
| 11 | \( 1 + (0.835 - 0.549i)T \) |
| 13 | \( 1 + (-0.993 + 0.116i)T \) |
| 17 | \( 1 + (0.766 + 0.642i)T \) |
| 19 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (-0.973 - 0.230i)T \) |
| 29 | \( 1 + (0.597 - 0.802i)T \) |
| 31 | \( 1 + (0.286 + 0.957i)T \) |
| 37 | \( 1 + (0.173 - 0.984i)T \) |
| 41 | \( 1 + (0.396 - 0.918i)T \) |
| 43 | \( 1 + (-0.893 - 0.448i)T \) |
| 47 | \( 1 + (0.286 - 0.957i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.835 + 0.549i)T \) |
| 61 | \( 1 + (-0.686 - 0.727i)T \) |
| 67 | \( 1 + (-0.597 - 0.802i)T \) |
| 71 | \( 1 + (0.939 - 0.342i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.396 - 0.918i)T \) |
| 83 | \( 1 + (-0.396 - 0.918i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.0581 - 0.998i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−25.235392528616009523698162641566, −24.264601888998879127581438168987, −23.42865864198684467947277637439, −22.46298082976738320915050846222, −21.69556261494346679584392395791, −20.48454449634717078060244335632, −19.814512534219016599021480693485, −19.19012929804507438638114406671, −17.772729320212144390157524471321, −16.89877921216619885358963958029, −16.31083679185272396716934940006, −15.25781733529096359229022727047, −14.18536602864072837634970462803, −13.088608735573689789899044038624, −12.38558906680910956516836584713, −11.58930104048588295989677154590, −9.879521191594610540677814266213, −9.58502651223892772246144153334, −8.34494944252132973956335136767, −7.21684100315610476257893382786, −6.20766887773906273738846119149, −4.93285702637436836599319526805, −4.05855286152586113862546318736, −2.68763908994389791023675783444, −1.17271608048061504323695923897,
0.11653676313199111864205692607, 2.051448447536832358559986223007, 3.20810937882680803954127212820, 4.07161290111511819507027239452, 5.848061354233210300788738234019, 6.47257563233572991943068019271, 7.51497090052053915147429585602, 8.72932447112888069097639859273, 9.93370904549870585116457466533, 10.48244974657117192851568814848, 11.871184326337042362984358476528, 12.46068280669095495180346576086, 13.87675544113305518344814506060, 14.5249886900591258401345388903, 15.46219164024790060980329541948, 16.5197421169032704089122035967, 17.32336806864778521075369335382, 18.53545718592680904155043428507, 19.299429551314481612368822299450, 19.7364650914077268868203215970, 21.38724356426781927023133037930, 21.94860338288126287204694086983, 22.75966738259299280836563204965, 23.5311423508910541200466078618, 24.79431554456228618488589109445