| L(s) = 1 | + (0.597 + 0.802i)5-s + (0.835 − 0.549i)7-s + (0.993 + 0.116i)11-s + (−0.286 − 0.957i)13-s + (0.173 − 0.984i)17-s + (−0.173 − 0.984i)19-s + (0.835 + 0.549i)23-s + (−0.286 + 0.957i)25-s + (−0.686 − 0.727i)29-s + (0.0581 − 0.998i)31-s + (0.939 + 0.342i)35-s + (−0.939 + 0.342i)37-s + (0.973 + 0.230i)41-s + (−0.396 − 0.918i)43-s + (0.0581 + 0.998i)47-s + ⋯ |
| L(s) = 1 | + (0.597 + 0.802i)5-s + (0.835 − 0.549i)7-s + (0.993 + 0.116i)11-s + (−0.286 − 0.957i)13-s + (0.173 − 0.984i)17-s + (−0.173 − 0.984i)19-s + (0.835 + 0.549i)23-s + (−0.286 + 0.957i)25-s + (−0.686 − 0.727i)29-s + (0.0581 − 0.998i)31-s + (0.939 + 0.342i)35-s + (−0.939 + 0.342i)37-s + (0.973 + 0.230i)41-s + (−0.396 − 0.918i)43-s + (0.0581 + 0.998i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.458500308 - 0.6843703352i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.458500308 - 0.6843703352i\) |
| \(L(1)\) |
\(\approx\) |
\(1.404037744 - 0.09939165699i\) |
| \(L(1)\) |
\(\approx\) |
\(1.404037744 - 0.09939165699i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.597 + 0.802i)T \) |
| 7 | \( 1 + (0.835 - 0.549i)T \) |
| 11 | \( 1 + (0.993 + 0.116i)T \) |
| 13 | \( 1 + (-0.286 - 0.957i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.173 - 0.984i)T \) |
| 23 | \( 1 + (0.835 + 0.549i)T \) |
| 29 | \( 1 + (-0.686 - 0.727i)T \) |
| 31 | \( 1 + (0.0581 - 0.998i)T \) |
| 37 | \( 1 + (-0.939 + 0.342i)T \) |
| 41 | \( 1 + (0.973 + 0.230i)T \) |
| 43 | \( 1 + (-0.396 - 0.918i)T \) |
| 47 | \( 1 + (0.0581 + 0.998i)T \) |
| 53 | \( 1 + (-0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.993 - 0.116i)T \) |
| 61 | \( 1 + (0.893 + 0.448i)T \) |
| 67 | \( 1 + (0.686 - 0.727i)T \) |
| 71 | \( 1 + (-0.766 - 0.642i)T \) |
| 73 | \( 1 + (0.766 - 0.642i)T \) |
| 79 | \( 1 + (-0.973 + 0.230i)T \) |
| 83 | \( 1 + (-0.973 + 0.230i)T \) |
| 89 | \( 1 + (0.766 - 0.642i)T \) |
| 97 | \( 1 + (0.597 - 0.802i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.751459041509830735583113836131, −24.35067725751082075823182141352, −23.31343666017606667066592181472, −22.02728663775591339428006963475, −21.361353202695709702739566171486, −20.71622224436641812446895879931, −19.569927752953982052770827306601, −18.71319157700830233949994426178, −17.56634253173585255845272255710, −16.93641776721718936929998260528, −16.11588477637011635718674038, −14.54114990356812863989010910692, −14.37950604250172473462988686207, −12.89096187270413183136871684648, −12.17475442215925858124719005811, −11.22507962160270993211894188747, −9.98836024985025103305914082549, −8.89192724913516839345881279697, −8.4315565505283629034843550530, −6.90143673660559803800816416839, −5.81339277413162334846471376975, −4.88312688254857910485194251904, −3.82372374734698359077406129884, −2.01910912090980888109019797375, −1.30838412466697190990411593908,
0.82300163930312172796738865707, 2.18161548480758147590623921976, 3.34844925983489584712005664184, 4.66719324247333924405530469830, 5.738095755716486175628386278563, 6.97255825394665471609485789835, 7.62672759706143801706052918761, 9.07394126288947800159599044688, 9.95640936694428610321319575915, 11.01700958613991590230799723867, 11.63489364729822481391897380417, 13.11147446657679126949127298892, 13.93372937237403830125967792992, 14.72968358392947906647042762824, 15.503368776271292031339690458564, 17.179867672626109702063175179444, 17.37275938887727912135473908208, 18.42731334625520995865505860958, 19.4296693085496734116376117911, 20.43762488958259474506919331466, 21.20047426119191728644798281841, 22.340085608508687139133956625173, 22.75055547291619662949331672538, 24.0022422409151798426225339946, 24.87977498067057872222875338368