| L(s) = 1 | + (0.396 + 0.918i)5-s + (0.0581 − 0.998i)7-s + (−0.597 − 0.802i)11-s + (−0.686 − 0.727i)13-s + (0.173 + 0.984i)17-s + (−0.173 + 0.984i)19-s + (0.0581 + 0.998i)23-s + (−0.686 + 0.727i)25-s + (0.973 + 0.230i)29-s + (−0.893 − 0.448i)31-s + (0.939 − 0.342i)35-s + (−0.939 − 0.342i)37-s + (−0.286 + 0.957i)41-s + (0.993 − 0.116i)43-s + (−0.893 + 0.448i)47-s + ⋯ |
| L(s) = 1 | + (0.396 + 0.918i)5-s + (0.0581 − 0.998i)7-s + (−0.597 − 0.802i)11-s + (−0.686 − 0.727i)13-s + (0.173 + 0.984i)17-s + (−0.173 + 0.984i)19-s + (0.0581 + 0.998i)23-s + (−0.686 + 0.727i)25-s + (0.973 + 0.230i)29-s + (−0.893 − 0.448i)31-s + (0.939 − 0.342i)35-s + (−0.939 − 0.342i)37-s + (−0.286 + 0.957i)41-s + (0.993 − 0.116i)43-s + (−0.893 + 0.448i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.875 + 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.875 + 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1398376201 + 0.5428829631i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1398376201 + 0.5428829631i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8806904071 + 0.1089080714i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8806904071 + 0.1089080714i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.396 + 0.918i)T \) |
| 7 | \( 1 + (0.0581 - 0.998i)T \) |
| 11 | \( 1 + (-0.597 - 0.802i)T \) |
| 13 | \( 1 + (-0.686 - 0.727i)T \) |
| 17 | \( 1 + (0.173 + 0.984i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.0581 + 0.998i)T \) |
| 29 | \( 1 + (0.973 + 0.230i)T \) |
| 31 | \( 1 + (-0.893 - 0.448i)T \) |
| 37 | \( 1 + (-0.939 - 0.342i)T \) |
| 41 | \( 1 + (-0.286 + 0.957i)T \) |
| 43 | \( 1 + (0.993 - 0.116i)T \) |
| 47 | \( 1 + (-0.893 + 0.448i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.597 + 0.802i)T \) |
| 61 | \( 1 + (-0.835 - 0.549i)T \) |
| 67 | \( 1 + (-0.973 + 0.230i)T \) |
| 71 | \( 1 + (-0.766 + 0.642i)T \) |
| 73 | \( 1 + (0.766 + 0.642i)T \) |
| 79 | \( 1 + (0.286 + 0.957i)T \) |
| 83 | \( 1 + (0.286 + 0.957i)T \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.396 - 0.918i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.52514010091412962372131381308, −23.831291325421155183502038411874, −22.65246598200611920042576091979, −21.71317807311602119427377376816, −20.9853074935401816795410724418, −20.17064428616378129348643261987, −19.12069738073284583079169792365, −18.11353184429882826985801668051, −17.38354005058033143685329159439, −16.28507842111578705628336092277, −15.563506904726778178377095286325, −14.49084079816570302821514266469, −13.455916201588943533073200890466, −12.37921468661939625615430993133, −11.97188704525168898212376710741, −10.48886512428341051163367053262, −9.33488996454923342821713306439, −8.86015853945160718628983868141, −7.569476710374779323289300230624, −6.40879074733482813417169257163, −5.0574780659478560780450802389, −4.704123745065339446644038600862, −2.72944836384598484430322299670, −1.85606734290501837657879216346, −0.15317824490962791892028393665,
1.501972788747124934383087908502, 2.95557912060916620226258507468, 3.81203679133687378702347406778, 5.35239266201973099580256248478, 6.280351034994501501827718560274, 7.43643060691310135611246970786, 8.14253101411256064929392194700, 9.75771943975596044072992054376, 10.48429513397163678406473629826, 11.107693835719862794435373045139, 12.5467189185934964773174979747, 13.50840187094753348328464951961, 14.304370490889561477706107391553, 15.11776244649604253327234522784, 16.30326403292543098053203442765, 17.269479011324267839366716431778, 17.967982856448670334306679375580, 19.06689973828600345372227524505, 19.74146265240673182088251354895, 20.965833149168630819195074228748, 21.65075717021455203736247353717, 22.64625047402991092883647371913, 23.409573345339491821110745213157, 24.26301247110467890104112701575, 25.43990101335457589406972966956