L(s) = 1 | + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (−0.939 + 0.342i)5-s + (0.5 + 0.866i)8-s − 10-s + (0.939 + 0.342i)11-s + (−0.173 + 0.984i)13-s + (0.173 + 0.984i)16-s + 17-s − 19-s + (−0.939 − 0.342i)20-s + (0.766 + 0.642i)22-s + (−0.173 + 0.984i)23-s + (0.766 − 0.642i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
L(s) = 1 | + (0.939 + 0.342i)2-s + (0.766 + 0.642i)4-s + (−0.939 + 0.342i)5-s + (0.5 + 0.866i)8-s − 10-s + (0.939 + 0.342i)11-s + (−0.173 + 0.984i)13-s + (0.173 + 0.984i)16-s + 17-s − 19-s + (−0.939 − 0.342i)20-s + (0.766 + 0.642i)22-s + (−0.173 + 0.984i)23-s + (0.766 − 0.642i)25-s + (−0.5 + 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.276 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.276 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.413625679 + 1.063869410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.413625679 + 1.063869410i\) |
\(L(1)\) |
\(\approx\) |
\(1.463157292 + 0.6086440336i\) |
\(L(1)\) |
\(\approx\) |
\(1.463157292 + 0.6086440336i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.939 + 0.342i)T \) |
| 5 | \( 1 + (-0.939 + 0.342i)T \) |
| 11 | \( 1 + (0.939 + 0.342i)T \) |
| 13 | \( 1 + (-0.173 + 0.984i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.766 - 0.642i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (0.766 - 0.642i)T \) |
| 47 | \( 1 + (0.766 - 0.642i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (0.173 - 0.984i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (0.173 + 0.984i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.47102116258209289508399236670, −25.71338244577495549811824103356, −24.75047863230054791836899024541, −23.94788249634170836660976771375, −23.04449402773578715130486315207, −22.3221467319057146415921066809, −21.22536329197013012178558642780, −20.19656628800022766924188062262, −19.57691428460480133169571793084, −18.61180858020359528766853691844, −16.89433557971221017690488699590, −16.09438921097048842717530926967, −14.950789325945662820924489642685, −14.34172737719045004063746114493, −12.8316871943930149007619794720, −12.293306745820110940001083815252, −11.233960857490392017512127549577, −10.28270342452780097448373189232, −8.734487023029092407747958622016, −7.50493146155736476348472795536, −6.28820514387749530462745372837, −5.04861775366164574938964554613, −3.96360001648145335143306284641, −3.00596434074552736758314852285, −1.17245381742964331552035898931,
2.07449841684879524550400154454, 3.68699773546998143542685834758, 4.26073226809152623242075320751, 5.787167466782156375192162142766, 6.96339049202747388804044892500, 7.701532806585455829434667491801, 9.091446518052062563687478003795, 10.75068733515081890827120160711, 11.81075713264991378373239586262, 12.3301869943644189865914638567, 13.791921272855003424892696542080, 14.65208516955310153824902993879, 15.3959236479171538417662233052, 16.49716278882331891412607074051, 17.27566261748684632622008644385, 18.9579651852635933896495472936, 19.65858566492090957643901514656, 20.81978843035659339500142994913, 21.78484479305199793847153129523, 22.710725925424493526170515519147, 23.48383010618474666465254219484, 24.206559221608277368079106208985, 25.37008114738457459697471498689, 26.148330310015632865468206870227, 27.26753649042878700270309825155