L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.173 + 0.984i)5-s + (0.5 − 0.866i)8-s − 10-s + (−0.173 + 0.984i)11-s + (−0.766 + 0.642i)13-s + (0.766 + 0.642i)16-s + 17-s − 19-s + (0.173 − 0.984i)20-s + (−0.939 − 0.342i)22-s + (−0.766 + 0.642i)23-s + (−0.939 + 0.342i)25-s + (−0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.939 − 0.342i)4-s + (0.173 + 0.984i)5-s + (0.5 − 0.866i)8-s − 10-s + (−0.173 + 0.984i)11-s + (−0.766 + 0.642i)13-s + (0.766 + 0.642i)16-s + 17-s − 19-s + (0.173 − 0.984i)20-s + (−0.939 − 0.342i)22-s + (−0.766 + 0.642i)23-s + (−0.939 + 0.342i)25-s + (−0.5 − 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.970 + 0.240i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.970 + 0.240i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.09404033929 + 0.7698440336i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09404033929 + 0.7698440336i\) |
\(L(1)\) |
\(\approx\) |
\(0.5737101165 + 0.5820536268i\) |
\(L(1)\) |
\(\approx\) |
\(0.5737101165 + 0.5820536268i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.173 + 0.984i)T \) |
| 5 | \( 1 + (0.173 + 0.984i)T \) |
| 11 | \( 1 + (-0.173 + 0.984i)T \) |
| 13 | \( 1 + (-0.766 + 0.642i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.766 - 0.642i)T \) |
| 31 | \( 1 + (0.939 + 0.342i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (-0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.939 + 0.342i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.766 - 0.642i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.173 + 0.984i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.173 - 0.984i)T \) |
| 83 | \( 1 + (0.766 + 0.642i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.939 - 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.97900242915593532379008697217, −25.91740730046369784133732025951, −24.72573592675360644335428595302, −23.79384571292327539172559660622, −22.70162942894005852065836746451, −21.57546182326861210043511006802, −20.989840333548277955057811064530, −19.97331183375947610300369905735, −19.20577850789276333445391349983, −18.122949799667458185366635355063, −17.03044574232660986075763531270, −16.3694505226357593412838921380, −14.70892203903030900092650812322, −13.57953864044603874044553042362, −12.687224028460199946962423372833, −11.95101903711408606260836608285, −10.66231841432307202356362290932, −9.758245327038054090447713154888, −8.6323029296397140823339356591, −7.88710647206958648794637233966, −5.79904742268351574151206450941, −4.79598861215057026409969652699, −3.53083684208853759587237950669, −2.15565764564460608624410655734, −0.64780529878134612998349549229,
2.062369950073575140179787550713, 3.80849455564796134332284594409, 5.07947961469182332160486774103, 6.34824096539880235699207924891, 7.18055887849534474413491399852, 8.113820623739653660932413370207, 9.69533373787082249950603040495, 10.15841203893096752194832473573, 11.75640701327158665900820867703, 13.05528581514332702837974301756, 14.26775103211537512226128464343, 14.81947848395320164442375312021, 15.77350308070649094006860246076, 17.05666126829561902577927348213, 17.707414948930650468265126715263, 18.79429385591913748238470788133, 19.44667876834707186831667648197, 21.118822233029588222818322742429, 22.12553702405982771496211026429, 22.97758772730478425840508373490, 23.71404378404196811460711178286, 24.88900231690664063351312567095, 25.83602842350076067642107996880, 26.27224222972690417283647944745, 27.40969122603991742271924151852