| L(s) = 1 | + (−0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)13-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + 23-s + 29-s + (−0.5 + 0.866i)37-s + (0.5 + 0.866i)41-s + (0.5 − 0.866i)43-s − 47-s + (−0.5 − 0.866i)49-s + (0.5 + 0.866i)53-s + (−0.5 + 0.866i)59-s − 61-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)13-s + (0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + 23-s + 29-s + (−0.5 + 0.866i)37-s + (0.5 + 0.866i)41-s + (0.5 − 0.866i)43-s − 47-s + (−0.5 − 0.866i)49-s + (0.5 + 0.866i)53-s + (−0.5 + 0.866i)59-s − 61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.675541574 - 0.7106302259i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.675541574 - 0.7106302259i\) |
| \(L(1)\) |
\(\approx\) |
\(1.050567191 + 0.002504622398i\) |
| \(L(1)\) |
\(\approx\) |
\(1.050567191 + 0.002504622398i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
| good | 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 - T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.82041990974931305795779576384, −19.28228565439698250556268514536, −18.865357036953937751720871277973, −17.66012072707285160861993931199, −17.01411922664920078702897916895, −16.41029815226112874987293606402, −15.8722047107606142847148923871, −14.4953004529498455536153804497, −14.32240906115175703756871435711, −13.40174422961356616692876087793, −12.62348954922059333818419614470, −11.85693304939945263705493760545, −11.00946491682324451336569127146, −10.29369686520240141431328812171, −9.541260734662542512913755466778, −8.75116757540728800708184227402, −7.85064184316761523498002823410, −7.02190419530564197976687326828, −6.34104574528688321901984342776, −5.50022056933921483911626113747, −4.380927066995859858706893175545, −3.689162683834827443730525593649, −2.93118420770822595058631283602, −1.594967815363517963734784684846, −0.81060821046303437145042637985,
0.413256954499424878007453624793, 1.506139624732085488032195755755, 2.84890000056344316669992581298, 3.01393060363044793342789289997, 4.5617914840288282379500191495, 5.11045241441382821303458114301, 6.030229808750483277550406041454, 6.947042515410092312404975881358, 7.55079863040688108467657146082, 8.642966552395448497038752786231, 9.372502861097701490748464044381, 9.90700989137769810784371913513, 10.84867356839945426064352588029, 11.95986864933634698725612621887, 12.20869504782016882927202090928, 13.12837429574555692601281735768, 13.883061033736419318404928549075, 14.97150913253359789194640991431, 15.26236238484796047654546301042, 16.10722565952436166066653320703, 16.94310950012497270473118994976, 17.76822342865461831699482396467, 18.264766044772174293246053645473, 19.212913362792353358093767603777, 19.79152799890235767742606642881