| L(s) = 1 | + 7-s − 11-s + 13-s − 17-s − 19-s + 23-s + 29-s + 37-s − 41-s − 43-s − 47-s + 49-s − 53-s + 59-s − 61-s + 67-s + 71-s + 73-s − 77-s + 79-s + 83-s + 89-s + 91-s − 97-s + ⋯ |
| L(s) = 1 | + 7-s − 11-s + 13-s − 17-s − 19-s + 23-s + 29-s + 37-s − 41-s − 43-s − 47-s + 49-s − 53-s + 59-s − 61-s + 67-s + 71-s + 73-s − 77-s + 79-s + 83-s + 89-s + 91-s − 97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1860 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.300899290\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.300899290\) |
| \(L(1)\) |
\(\approx\) |
\(1.165502966\) |
| \(L(1)\) |
\(\approx\) |
\(1.165502966\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
| good | 7 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 - T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.06405066128818787301690164837, −19.12054067354123213934577429784, −18.32579623614432185540626721444, −17.878683133186906548961135853666, −17.08188651271173352946434891660, −16.24975652899715816353916161478, −15.34578565072898762894739359976, −14.99551835549859570269735407310, −13.92286214171722231008119405181, −13.29604472938635757135897977545, −12.649432769852087481419393239928, −11.52547176745411883277093687457, −10.96879009437601786936428853150, −10.434803713913328657557294010072, −9.30147303617279849882574710201, −8.2927062916976801118111929248, −8.16845195998352100864619510494, −6.889015776767079471839733364971, −6.23507484627342712087448685708, −5.07711388995961310538395184207, −4.65455713421514949836556877757, −3.5707249775972946769022419508, −2.51782927185210202064238951710, −1.71284001225451453111575785706, −0.62618185781168899946405160978,
0.62618185781168899946405160978, 1.71284001225451453111575785706, 2.51782927185210202064238951710, 3.5707249775972946769022419508, 4.65455713421514949836556877757, 5.07711388995961310538395184207, 6.23507484627342712087448685708, 6.889015776767079471839733364971, 8.16845195998352100864619510494, 8.2927062916976801118111929248, 9.30147303617279849882574710201, 10.434803713913328657557294010072, 10.96879009437601786936428853150, 11.52547176745411883277093687457, 12.649432769852087481419393239928, 13.29604472938635757135897977545, 13.92286214171722231008119405181, 14.99551835549859570269735407310, 15.34578565072898762894739359976, 16.24975652899715816353916161478, 17.08188651271173352946434891660, 17.878683133186906548961135853666, 18.32579623614432185540626721444, 19.12054067354123213934577429784, 20.06405066128818787301690164837