L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.342 − 0.939i)3-s + (−0.766 − 0.642i)4-s + 6-s + (−0.984 − 0.173i)7-s + (0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.342 + 0.939i)12-s + (−0.642 + 0.766i)13-s + (0.5 − 0.866i)14-s + (0.173 + 0.984i)16-s + (−0.642 − 0.766i)17-s + (−0.342 − 0.939i)18-s + (0.939 − 0.342i)19-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)2-s + (−0.342 − 0.939i)3-s + (−0.766 − 0.642i)4-s + 6-s + (−0.984 − 0.173i)7-s + (0.866 − 0.5i)8-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.342 + 0.939i)12-s + (−0.642 + 0.766i)13-s + (0.5 − 0.866i)14-s + (0.173 + 0.984i)16-s + (−0.642 − 0.766i)17-s + (−0.342 − 0.939i)18-s + (0.939 − 0.342i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0656 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0656 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3655635265 + 0.3423063244i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3655635265 + 0.3423063244i\) |
\(L(1)\) |
\(\approx\) |
\(0.5652106840 + 0.06838920995i\) |
\(L(1)\) |
\(\approx\) |
\(0.5652106840 + 0.06838920995i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.342 + 0.939i)T \) |
| 3 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (-0.984 - 0.173i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.642 + 0.766i)T \) |
| 17 | \( 1 + (-0.642 - 0.766i)T \) |
| 19 | \( 1 + (0.939 - 0.342i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (0.766 + 0.642i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.984 + 0.173i)T \) |
| 59 | \( 1 + (-0.173 - 0.984i)T \) |
| 61 | \( 1 + (0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.984 - 0.173i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.642 + 0.766i)T \) |
| 89 | \( 1 + (-0.173 - 0.984i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.789771735456272895660288912221, −26.21317764138492828903266101969, −25.22903540440476438145564856891, −23.423699967469816740371387847366, −22.44951031614971732862059154761, −22.096265304583048702465095760254, −20.8810448890023114143299508723, −20.10685652326599439821256340405, −19.284518451055424427341626098528, −17.878742672616036936109286052259, −17.27975890612885302933022772523, −16.01964620286810336766868348528, −15.216041905878238865698571683267, −13.71204913026103686903538303515, −12.52518721429096239079232002707, −11.82287443968856627394417116129, −10.32016432442389649825690739775, −10.03751792829055134883105400971, −8.98267463572586789302247005716, −7.632453373112387137938543314042, −5.87523453657891699152228907715, −4.63963924064630964870208211168, −3.53498221237452869088509240368, −2.42161335594489161417518073019, −0.289644486794239014527000452145,
0.846831757664400100099332053280, 2.76139670824187433373649223336, 4.71791782073535337770297908773, 5.97180833422641625126315135290, 6.76144924709311447745651732820, 7.65074481734942038901278100442, 8.83272312737607762066102244140, 9.9275712074734839082558677042, 11.26447431624175354371493481259, 12.58339896531375181273378486739, 13.62106376036548200110742586362, 14.19183412816782054698844318308, 15.94837005481353717221596790012, 16.35964913176314951588012957006, 17.525331353702682644962760909093, 18.405156580040115274793572289953, 19.192044255472878202796970499988, 19.98632130364945006354255827195, 21.973449552624761522751209469939, 22.64941492979194746861460224798, 23.69313052904821425953051944621, 24.345987908669246048857546703258, 25.14820186712604386411707880558, 26.27958352725640188523914040968, 26.79541731500880760534868805265