L(s) = 1 | + 2-s + 4-s − 5-s − 7-s + 8-s − 10-s + 11-s + 13-s − 14-s + 16-s + 17-s + 19-s − 20-s + 22-s + 23-s + 25-s + 26-s − 28-s + 29-s − 31-s + 32-s + 34-s + 35-s − 37-s + 38-s − 40-s − 41-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 5-s − 7-s + 8-s − 10-s + 11-s + 13-s − 14-s + 16-s + 17-s + 19-s − 20-s + 22-s + 23-s + 25-s + 26-s − 28-s + 29-s − 31-s + 32-s + 34-s + 35-s − 37-s + 38-s − 40-s − 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 183 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 183 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.195656533\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.195656533\) |
\(L(1)\) |
\(\approx\) |
\(1.857865691\) |
\(L(1)\) |
\(\approx\) |
\(1.857865691\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 61 | \( 1 \) |
good | 2 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.030079139609153032826145091820, −25.77718706830122597355147197810, −25.053423918135471749965502732589, −23.91972303826479248927248247671, −22.973611132598616197671802772020, −22.60582542477840033559738202447, −21.387320540039787672584244049552, −20.24404977648919722563945703063, −19.55680173499314007357158387406, −18.64191173710907383996537849279, −16.754153814892083935896283941462, −16.12067827710113812627045770249, −15.238364324195480430921721067951, −14.19376663011857738138526428338, −13.126308416446661210608302989546, −12.12191384536772732308634901298, −11.430975381800504799070590330365, −10.164559626679759920692313524708, −8.678961664768601566938244711441, −7.26817830294184876752803053047, −6.46836157260039145452729188588, −5.15992567650912984316431048855, −3.675484790853870935437939468864, −3.27142393546728453666476919051, −1.13287869528821040848638909564,
1.13287869528821040848638909564, 3.27142393546728453666476919051, 3.675484790853870935437939468864, 5.15992567650912984316431048855, 6.46836157260039145452729188588, 7.26817830294184876752803053047, 8.678961664768601566938244711441, 10.164559626679759920692313524708, 11.430975381800504799070590330365, 12.12191384536772732308634901298, 13.126308416446661210608302989546, 14.19376663011857738138526428338, 15.238364324195480430921721067951, 16.12067827710113812627045770249, 16.754153814892083935896283941462, 18.64191173710907383996537849279, 19.55680173499314007357158387406, 20.24404977648919722563945703063, 21.387320540039787672584244049552, 22.60582542477840033559738202447, 22.973611132598616197671802772020, 23.91972303826479248927248247671, 25.053423918135471749965502732589, 25.77718706830122597355147197810, 27.030079139609153032826145091820