L(s) = 1 | + (−0.866 − 0.5i)7-s + (−0.669 − 0.743i)11-s + (−0.743 − 0.669i)13-s + (−0.587 − 0.809i)17-s + (0.809 − 0.587i)19-s + (−0.207 − 0.978i)23-s + (−0.913 + 0.406i)29-s + (−0.913 − 0.406i)31-s + (−0.951 + 0.309i)37-s + (−0.669 + 0.743i)41-s + (−0.866 − 0.5i)43-s + (−0.406 − 0.913i)47-s + (0.5 + 0.866i)49-s + (0.587 − 0.809i)53-s + (0.669 − 0.743i)59-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)7-s + (−0.669 − 0.743i)11-s + (−0.743 − 0.669i)13-s + (−0.587 − 0.809i)17-s + (0.809 − 0.587i)19-s + (−0.207 − 0.978i)23-s + (−0.913 + 0.406i)29-s + (−0.913 − 0.406i)31-s + (−0.951 + 0.309i)37-s + (−0.669 + 0.743i)41-s + (−0.866 − 0.5i)43-s + (−0.406 − 0.913i)47-s + (0.5 + 0.866i)49-s + (0.587 − 0.809i)53-s + (0.669 − 0.743i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0906 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0906 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2701515025 - 0.2958536459i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2701515025 - 0.2958536459i\) |
\(L(1)\) |
\(\approx\) |
\(0.6612964836 - 0.2668662541i\) |
\(L(1)\) |
\(\approx\) |
\(0.6612964836 - 0.2668662541i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.669 - 0.743i)T \) |
| 13 | \( 1 + (-0.743 - 0.669i)T \) |
| 17 | \( 1 + (-0.587 - 0.809i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.207 - 0.978i)T \) |
| 29 | \( 1 + (-0.913 + 0.406i)T \) |
| 31 | \( 1 + (-0.913 - 0.406i)T \) |
| 37 | \( 1 + (-0.951 + 0.309i)T \) |
| 41 | \( 1 + (-0.669 + 0.743i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.406 - 0.913i)T \) |
| 53 | \( 1 + (0.587 - 0.809i)T \) |
| 59 | \( 1 + (0.669 - 0.743i)T \) |
| 61 | \( 1 + (-0.669 - 0.743i)T \) |
| 67 | \( 1 + (0.406 - 0.913i)T \) |
| 71 | \( 1 + (-0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.951 + 0.309i)T \) |
| 79 | \( 1 + (0.913 - 0.406i)T \) |
| 83 | \( 1 + (-0.994 + 0.104i)T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.406 - 0.913i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.50159204501211661413335722578, −19.71149727535284008214641919046, −19.16556814310426895032817753464, −18.35830809465868753018006219242, −17.680760419955145283634615157069, −16.81887161493733073324130805568, −16.10805444691479716108478149833, −15.36553613479841259235763255891, −14.81513526098729495503652619140, −13.784820186066341989437243107079, −13.062784668477185596674883901041, −12.35320939852617360996897539669, −11.7701746958583277006938769321, −10.71647971427943432945071119859, −9.86535441824764927728308537157, −9.39758177281357473729349252105, −8.49525296407400031054581720815, −7.42984743936856820600830649421, −6.94007336822949579980064397669, −5.83119014310644273107570180753, −5.2588022625642385490453512575, −4.1505000456041771438450919776, −3.34494481554870937384497875531, −2.31488595493021492980690017533, −1.59963590788173566580261856042,
0.12887188766405523465735337794, 0.48547471822741802941220210004, 2.0554101017630721928997874732, 3.03825560004981839454408487338, 3.56537329060930855660974529297, 4.88589159961841474491337985223, 5.40660214186184900234864878529, 6.549844684187774737725675805796, 7.1530069400169377118178259209, 7.98147508957136291267463030568, 8.91609779696064331005288894599, 9.721828392509480636224666680715, 10.387606578944995187310566638989, 11.15079942091634315975152813182, 12.00644484342122646505282414628, 12.99479610868810997743439999740, 13.35830578733958061947572833971, 14.18497440158671643136301820441, 15.14648904123138765859335328112, 15.85026482353452592436658303619, 16.5199720052981260811142150288, 17.111130959162665152361027957293, 18.26362528097644001719372563295, 18.531155559875837028948248949499, 19.67389641151947662363566313179