L(s) = 1 | + (−0.866 − 0.5i)7-s + (0.104 + 0.994i)11-s + (0.994 + 0.104i)13-s + (−0.951 + 0.309i)17-s + (−0.309 − 0.951i)19-s + (−0.406 + 0.913i)23-s + (−0.669 − 0.743i)29-s + (−0.669 + 0.743i)31-s + (0.587 − 0.809i)37-s + (0.104 − 0.994i)41-s + (−0.866 − 0.5i)43-s + (0.743 − 0.669i)47-s + (0.5 + 0.866i)49-s + (0.951 + 0.309i)53-s + (−0.104 + 0.994i)59-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)7-s + (0.104 + 0.994i)11-s + (0.994 + 0.104i)13-s + (−0.951 + 0.309i)17-s + (−0.309 − 0.951i)19-s + (−0.406 + 0.913i)23-s + (−0.669 − 0.743i)29-s + (−0.669 + 0.743i)31-s + (0.587 − 0.809i)37-s + (0.104 − 0.994i)41-s + (−0.866 − 0.5i)43-s + (0.743 − 0.669i)47-s + (0.5 + 0.866i)49-s + (0.951 + 0.309i)53-s + (−0.104 + 0.994i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.959 - 0.282i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.959 - 0.282i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.396105814 - 0.2011819212i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.396105814 - 0.2011819212i\) |
\(L(1)\) |
\(\approx\) |
\(0.9111748450 + 0.01014740076i\) |
\(L(1)\) |
\(\approx\) |
\(0.9111748450 + 0.01014740076i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.104 + 0.994i)T \) |
| 13 | \( 1 + (0.994 + 0.104i)T \) |
| 17 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
| 23 | \( 1 + (-0.406 + 0.913i)T \) |
| 29 | \( 1 + (-0.669 - 0.743i)T \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
| 37 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.104 - 0.994i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.743 - 0.669i)T \) |
| 53 | \( 1 + (0.951 + 0.309i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| 67 | \( 1 + (-0.743 - 0.669i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (-0.207 + 0.978i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.743 - 0.669i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.16523607234844509230946038178, −19.158859573195598503159336698412, −18.548099844110186738335063804006, −18.15440169815541847372442658952, −16.84067658900011121318671377771, −16.36431953600429216593431282223, −15.7663982232458220295037872146, −14.8938240999023269046233853543, −14.10296412997299509688851937903, −13.14174853578864782075605636161, −12.863128177186761954744919061617, −11.71090991800941630103592138037, −11.120583828328580405284834239587, −10.27609455943559649408338188462, −9.394379946537614391129970437909, −8.65763969903573166813192529936, −8.08895836948620124398847087969, −6.825340191805774215375162494779, −6.15572891601115992141568314967, −5.643829651053278219096830807578, −4.37311116397945287594604766769, −3.53839460485051529680977951058, −2.80445943961299580538026838845, −1.7293457560660890822548185424, −0.532949921877731040445815922009,
0.43941312518706280762603594972, 1.66646419632620416678911382046, 2.53738211422828211398152382866, 3.7879656627469126824972114839, 4.13534588878000719281724538649, 5.34579589972143048962607244416, 6.25284581901652851448253954955, 6.97906521536552337779978416219, 7.58638834405464795684624397226, 8.87552183704290704655387077958, 9.253684356152409818267491541125, 10.28878234083016532757974991382, 10.849716279424144990273292667920, 11.76952537755217725656620095250, 12.63343692674608178546696782871, 13.40568474075843608160792748541, 13.73416990714926969604434381100, 15.08036355289514423909635813423, 15.447104320551767607363937740033, 16.29227568900657340925738371845, 17.04619797259349972839046561163, 17.81055662668628648924748071032, 18.38550730054748083631149916020, 19.61287743242857376382297843726, 19.734252645364948367680385066653