| L(s) = 1 | + (−0.866 + 0.5i)7-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)13-s − i·17-s + 19-s + (0.866 + 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + i·37-s + (0.5 − 0.866i)41-s + (0.866 − 0.5i)43-s + (0.866 − 0.5i)47-s + (0.5 − 0.866i)49-s + i·53-s + (0.5 − 0.866i)59-s + ⋯ |
| L(s) = 1 | + (−0.866 + 0.5i)7-s + (−0.5 − 0.866i)11-s + (0.866 + 0.5i)13-s − i·17-s + 19-s + (0.866 + 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + i·37-s + (0.5 − 0.866i)41-s + (0.866 − 0.5i)43-s + (0.866 − 0.5i)47-s + (0.5 − 0.866i)49-s + i·53-s + (0.5 − 0.866i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.784 - 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.784 - 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.479869032 - 0.5136444519i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.479869032 - 0.5136444519i\) |
| \(L(1)\) |
\(\approx\) |
\(1.043451759 - 0.08849371533i\) |
| \(L(1)\) |
\(\approx\) |
\(1.043451759 - 0.08849371533i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + iT \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.10908192340823863864551836900, −26.076072551773557933878611155990, −25.52345374357130021754457264786, −24.29916573755786169721182546691, −23.10213800790788247216681079428, −22.71220407816227164964728849802, −21.34315303687395339459030765193, −20.359176588607424748021449761646, −19.56938663829463714064455165708, −18.40276715486207764800325399611, −17.49283327295771658407216508106, −16.3196118212826222546225993957, −15.53851374695823155609188739747, −14.358871942628989878134161811004, −13.09558284834821595045332405751, −12.56255274697277429045072213750, −10.95835710101646162705262655400, −10.15559400135017449678490151934, −9.02413501426195955297964690766, −7.70140507178774807606618863989, −6.67526478490798260422654302743, −5.45491759007323316349016645225, −4.02101043289013070961191512963, −2.87109369781343863732487388850, −1.09370075853446726672101437647,
0.68940018828135221970862402498, 2.605920612263359156397060565024, 3.6572625302945163355149028573, 5.32022386972837441866033132452, 6.26542160051912758234654353932, 7.53023088181690996225356955069, 8.86683768436211835783215427324, 9.666832607640879158177106184017, 11.05515347861999760957025931614, 11.935922708549603310192569094927, 13.28429132197758417501783605572, 13.86613717531585449036210669143, 15.51233494915466185682661832386, 16.01781602284161114743417578412, 17.12827638805815676577969127773, 18.67564718527536671564488634139, 18.84167849860187113129316903478, 20.324339687289877086665576539341, 21.19799593466109648793547987680, 22.26238627848002923237485669582, 23.05472156721509928428999016022, 24.17747783238328506207497481546, 25.10566864493721491576328331025, 26.06797851560483109376390477873, 26.85211769077050595796131108159