L(s) = 1 | + (−0.227 + 0.973i)3-s + (−0.582 − 0.812i)5-s + (−0.896 − 0.442i)9-s + (−0.999 − 0.0327i)11-s + (−0.0980 + 0.995i)13-s + (0.923 − 0.382i)15-s + (0.793 − 0.608i)17-s + (0.352 − 0.935i)19-s + (0.946 − 0.321i)23-s + (−0.321 + 0.946i)25-s + (0.634 − 0.773i)27-s + (0.881 + 0.471i)29-s + (−0.258 − 0.965i)31-s + (0.258 − 0.965i)33-s + (−0.162 + 0.986i)37-s + ⋯ |
L(s) = 1 | + (−0.227 + 0.973i)3-s + (−0.582 − 0.812i)5-s + (−0.896 − 0.442i)9-s + (−0.999 − 0.0327i)11-s + (−0.0980 + 0.995i)13-s + (0.923 − 0.382i)15-s + (0.793 − 0.608i)17-s + (0.352 − 0.935i)19-s + (0.946 − 0.321i)23-s + (−0.321 + 0.946i)25-s + (0.634 − 0.773i)27-s + (0.881 + 0.471i)29-s + (−0.258 − 0.965i)31-s + (0.258 − 0.965i)33-s + (−0.162 + 0.986i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1792 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1792 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.156 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3964582000 - 0.4643990031i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3964582000 - 0.4643990031i\) |
\(L(1)\) |
\(\approx\) |
\(0.7661975924 + 0.09299004089i\) |
\(L(1)\) |
\(\approx\) |
\(0.7661975924 + 0.09299004089i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.227 + 0.973i)T \) |
| 5 | \( 1 + (-0.582 - 0.812i)T \) |
| 11 | \( 1 + (-0.999 - 0.0327i)T \) |
| 13 | \( 1 + (-0.0980 + 0.995i)T \) |
| 17 | \( 1 + (0.793 - 0.608i)T \) |
| 19 | \( 1 + (0.352 - 0.935i)T \) |
| 23 | \( 1 + (0.946 - 0.321i)T \) |
| 29 | \( 1 + (0.881 + 0.471i)T \) |
| 31 | \( 1 + (-0.258 - 0.965i)T \) |
| 37 | \( 1 + (-0.162 + 0.986i)T \) |
| 41 | \( 1 + (0.980 + 0.195i)T \) |
| 43 | \( 1 + (-0.956 - 0.290i)T \) |
| 47 | \( 1 + (-0.991 + 0.130i)T \) |
| 53 | \( 1 + (-0.0327 + 0.999i)T \) |
| 59 | \( 1 + (-0.910 - 0.412i)T \) |
| 61 | \( 1 + (-0.683 + 0.729i)T \) |
| 67 | \( 1 + (0.973 + 0.227i)T \) |
| 71 | \( 1 + (0.831 + 0.555i)T \) |
| 73 | \( 1 + (-0.997 + 0.0654i)T \) |
| 79 | \( 1 + (-0.608 + 0.793i)T \) |
| 83 | \( 1 + (0.773 - 0.634i)T \) |
| 89 | \( 1 + (0.751 - 0.659i)T \) |
| 97 | \( 1 + (-0.707 + 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.94560402478035054224858651014, −19.37006059922199214512120768158, −18.74248349567803525002145624155, −18.05069437258250064279721648942, −17.60420675709831160325906219566, −16.54739287294344091867986315439, −15.7972483889457774238398849515, −14.9302818175152847371823199658, −14.33158301039712809787482857124, −13.473222500155699873277695309639, −12.59750453748136624921028846893, −12.22793217837475552244770187885, −11.17602128249905034590992892277, −10.62404396795748176590275369495, −9.907578326623373966290227184536, −8.451691644810984226848545401447, −7.861682086175505603296835589348, −7.411875510863958589071281349817, −6.46699245056596023810437395472, −5.6833175043396327965663630781, −4.94191720441503778168877241605, −3.42611212271308177216427840913, −2.99826684255840877085773354276, −1.9392841319206793271322087504, −0.81886420617710804472409789832,
0.15725025455302430100587990562, 1.112451331886618946910957709907, 2.654693365998762764983101506885, 3.37524294631576099781439893559, 4.556294128334379210982012063310, 4.82811552706195249178106830584, 5.64191187535870156917096710926, 6.79922915712547673811369492983, 7.73544665705806727699842136158, 8.578132857226845285916632658726, 9.271826859611283047019351556533, 9.90051829392021421132965048696, 10.90983395146658697400826810641, 11.51756231300207653476693441323, 12.18144485212507475661164522618, 13.10269309109176478489154430629, 13.914612489603151272227189799798, 14.85125650984831721489011878248, 15.55285436617646351010996508226, 16.15459719671886169643836011445, 16.683126531775439918777308602303, 17.36061812479076335625841452429, 18.41069669577572874414068740474, 19.11769337240484302057852051335, 20.097758315905909142383337920293